CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pirling, T."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparative study of evolution of residual stress state by local mechanical tensioning and laser processing of ferritic and austenitic structural steel welds.
    (Scientific & Academic Publishing Co., 2015-02-21) Sule, Jibrin; Ganguly, Supriyo; Coules, Harry E.; Pirling, T.
    Complex thermal stresses generated in welded structures are undesirable but inevitable in fusion welding. The presence of residual stresses can be detrimental to the integrity of a welded joint. In this research, redistribution of residual stress magnitude and profile was studied and compared in two multi-pass welded structural alloys (API X100 and 304L stainless steel) after cold rolling and laser processing. The residual stress field was studied by neutron diffraction using the SALSA strain scanner at their reactor neutron source at ILL, Grenoble. In addition to a complex distribution of residual stress state, multi-pass welds also forms dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. Dendritic grain structure is weaker and segregation of alloying elements may result in formation of corrosion microcells as well as reduction in overall corrosion prevention due to depletion of alloying elements in certain areas. The modification of as-welded residual stress state was done by cold rolling which was followed by laser processing to create a recrystallized microstructure to minimise segregation. The main objective of this study is to understand the suitability of this novel manufacturing technique to create a stress free weldment with recrystallised grain structure. Hardness evolution in the welded structures was scanned following welding, post weld cold rolling and cold rolling followed by laser processing. Hardness distribution in both the structural alloys showed a significant evidence of plastic deformation near the cap pass of the weld metal. Residual stress redistribution was observed up to 4 mm from the capping pass for ferritic steel, while in austenitic steel weld, post weld cold rolling was effective in modifying the residual stress redistribution throughout the entire thickness. Laser processing in both cases reinstated the as-welded residual stress distribution and resulted in softening of the strained area.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Welding process impact on residual stress and distortion
    (2009-11-01T00:00:00Z) Colegrove, Paul A.; Ikeagu, C.; Thistlethwaite, A.; Williams, Stewart W.; Nagy, T.; Suder, Wojciech; Steuwer, Axel; Pirling, T.
    Residual stress and distortion continue to be important issues in shipbuilding and are still subject to large amounts of research. This paper demonstrates how the type of welding process influences the amount of distortion. Many shipyards currently use submerged arc welding (SAW) as their welding process of choice. In this manuscript we compare welds made by SAW with DC gas metal arc welding, pulsed gas metal arc welding, Fronius Cold Metal Transfer (CMT), autogenous laser and laser hybrid welding on butt welds in 4mm thick DH36 ship plate. Laser and laser hybrid welding were found to produce the lowest distortion. Nevertheless a considerable improvement can be achieved with the pulsed gas metal arc welding and CMT processes. The paper seeks to understand the relationship between heat input, fusion area, measured distortion and the residual stress predicted from a simple numerical model, and the residual stresses validated with experimental data.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback