CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Prangnell, Philip"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effect of loading direction on strain localisation in wire arc additively manufactured Ti–6Al–4V
    (Elsevier, 2020-05-21) Lunt, David; Ho, Alistair; Davis, Alec E.; Harte, Allan; Martina, Filomeno; da Fonseca, João Quinta; Prangnell, Philip
    Ti–6Al–4V microstructures produced by high deposition rate Wire Arc Additive Manufacturing (WAAM) can be both heterogeneous and anisotropic. Key features of the as-built microstructures include; large columnar ß grains, an α transformation texture inherited from the β solidification texture, grain boundary (GB) α colonies, and Heat Affected Zone (HAZ) banding. The effect of this heterogeneity on the local strain distribution has been investigated using Digital Image Correlation (DIC) in samples loaded in tension; parallel (WD), perpendicular (ND) and at 45° (45ND) to the deposited layers. Full-field surface strain maps were correlated to the underlying local texture. It is shown that loading perpendicular to the columnar β grains leads to a diffuse heterogeneous deformation distribution, due to the presence of regions containing hard, and soft, α microtextures within different parent β grains. The ‘soft’ regions correlated to multi-variant α colonies that did not contain a hard α variant unfavourably orientated for basal or prismatic slip. Far more severe strain localisation was seen in 45° ND loading at ‘soft’ β grain boundaries, where single variant α GB colonies favourably orientated for slip had developed during transformation. In comparison, when loaded parallel to the columnar ß grains, the strain distribution was relatively homogeneous and the HAZ bands did not show any obvious influence on strain localisation at the deposit layer-scale. However, when using high-resolution DIC, as well as more intense shear bands being resolved at the β grain boundaries during 45° ND loading, microscale strain localisation was observed in HAZ bands below the yield point within the thin white-etching α colony layer.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacture
    (Taylor and Francis, 2022-08-18) Caballero, Armando; Davis, Alec E.; Kennedy, Jacob R.; Fellowes, Jonathan; Garner, Alistair; Williams, Stewart; Prangnell, Philip
    The as-deposited microstructure and mechanical properties of the near-β titanium alloy Ti-5Al-5V-5Mo-3Cr (Ti-5553) produced by wire-arc additive manufacture (WAAM) were investigated, to understand its microstructural evolution under WAAM deposition conditions and to establish correlations between the microstructure features formed and the thermal cycles experienced during deposition. The ‘as-deposited’ Ti-5553 WAAM material exhibited higher tensile strengths than other as-deposited additively manufactured Ti-5553 deposits previously reported in the literature, but had significant anisotropy in elongation, as a consequence of the coarse and columnar β-grain structure that formed on solidification, which exhibited a strong {001}β⟨001⟩β cube texture. The multiple reheating cycles, inherent to the WAAM process, were recorded using a novel ‘harpoon’ thermocouple technique, and the α precipitation evolution was related to the thermal history. Electron probe microanalysis chemical maps revealed significant solute microsegregation during solidification, which influenced the subsequent precipitation due to its effect on the local β-phase stability. As each layer experienced more reheating cycles, the microstructure evolution could be ‘time resolved’ and the α laths were found to precipitate in a specific sequence of nucleation sites, starting at the β-grain boundaries and then inter-dendritically, where there was lower matrix β stability. However, after the reheating peak temperature was insufficiently high to have any further effect, the microstructure consisted of a relatively uniform distribution of α laths.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback