Browsing by Author "Qi, Hong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Automated tortuosity analysis of nerve fibers in corneal confocal microscopy(IEEE, 2020-02-17) Zhao, Yitian; Zhang, Jiong; Pereira, Ella; Zheng, Yalin; Su, Pan; Xie, Jianyang; Zhao, Yifan; Shi, Yonggang; Qi, Hong; Liu, Jiang; Liu, YonghuaiPrecise characterization and analysis of corneal nerve fiber tortuosity are of great importance in facilitating examination and diagnosis of many eye-related diseases. In this paper we propose a fully automated method for image-level tortuosity estimation, comprising image enhancement, exponential curvature estimation, and tortuosity level classification. The image enhancement component is based on an extended Retinex model, which not only corrects imbalanced illumination and improves image contrast in an image, but also models noise explicitly to aid removal of imaging noise. Afterwards, we take advantage of exponential curvature estimation in the 3D space of positions and orientations to directly measure curvature based on the enhanced images, rather than relying on the explicit segmentation and skeletonization steps in a conventional pipeline usually with accumulated pre-processing errors. The proposed method has been applied over two corneal nerve microscopy datasets for the estimation of a tortuosity level for each image. The experimental results show that it performs better than several selected state-of-the-art methods. Furthermore, we have performed manual gradings at tortuosity level of four hundred and three corneal nerve microscopic images, and this dataset has been released for public access to facilitate other researchers in the community in carrying out further research on the same and related topics.Item Open Access Early detection of dementia through retinal imaging and trustworthy AI(Springer , 2024-10-04) Hao, Jinkui; Kwapong, William R.; Shen, Ting; Fu, Huazhu; Xu, Yanwu; Lu, Qinkang; Liu, Shouyue; Zhang, Jiong; Liu, Yonghuai; Zhao, Yifan; Zheng, Yalin; Frangi, Alejandro F.; Zhang, Shuting; Qi, Hong; Zhao, YitianAlzheimer's disease (AD) is a global healthcare challenge lacking a simple and affordable detection method. We propose a novel deep learning framework, Eye-AD, to detect Early-onset Alzheimer's Disease (EOAD) and Mild Cognitive Impairment (MCI) using OCTA images of retinal microvasculature and choriocapillaris. Eye-AD employs a multilevel graph representation to analyze intra- and inter-instance relationships in retinal layers. Using 5751 OCTA images from 1671 participants in a multi-center study, our model demonstrated superior performance in EOAD (internal data: AUC = 0.9355, external data: AUC = 0.9007) and MCI detection (internal data: AUC = 0.8630, external data: AUC = 0.8037). Furthermore, we explored the associations between retinal structural biomarkers in OCTA images and EOAD/MCI, and the results align well with the conclusions drawn from our deep learning interpretability analysis. Our findings provide further evidence that retinal OCTA imaging, coupled with artificial intelligence, will serve as a rapid, noninvasive, and affordable dementia detection.Item Open Access Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering(IEEE, 2019-07-03) Zhao, Yitian; Xie, Jianyang; Zhang, Huaizhong; Zheng, Yalin; Zhao, Yifan; Qi, Hong; Zhao, Yangchun; Su, Pan; Liu, Jiang; Liu, YonghuaiThe estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.