Browsing by Author "Raffles, Mark H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Electrolytic in-process dressing superfinishing of spherical bearings using metal-resin bond ultra-fine CBN wheels(Professional Engineering Publishing, 2011-01-01T00:00:00Z) Raffles, Mark H.; Stephenson, David J.; Shore, Paul; Jin, T.The use of electrolytic in-process dressing (ELID) superfinishing has been investigated with the aim of substantially improving surface finish on spherical bearing balls as well as reducing process times. Using ELID in a superfinishing configuration is substantially different from the more conventional precision grinding set-up. With this ELID superfinishing system, metal-resin bonded (MRB) wheels containing very small superabrasives (30 to 0.12 μm) were employed. Surface finishes of 2 nm Ra were achieved with a #12 000 wheel, an order of magnitude better than balls produced using the conventional production techniques of barrelling or polishing. Consistently sub-10 nm Ra finishes were achieved with a #2000 wheel. Different ways of using the ELID system, including ELID 1, ELID 2, and ELID 3, were studied to examine how the different types control the cutting condition at the wheel's surface. It is the ability to control easily the cutting condition of superabrasives of this size that allows mirror surface finishes to be efficiently produced. Monitoring of wheel spindle and ELID power usage was found to provide useful information in assessing the wheel cItem Open Access Elid superfinishing of spherical bearings(Cranfield University, 2007) Raffles, Mark H.; Stephenson, David J.; Shore, PaulDriven by a requirement to extend the lifespan of self-aligning lined spherical bearings, this research investigates the use of Elid (electrolytic in-process dressing) as a method of improving ball surface finish. Elid is a continuous and self-regulating electrochemical dressing process that modifies the surface of a grinding, lapping, or superfinishing wheel. It provides improved grit protrusion, impedes wheel loading / glazing and promotes effective cutting. The characteristics of the newly-developed Elid superfinishing process are in many ways fundamentally different to conventional superfinishing. The main difference is that the use of super-abrasives prevents the wheel from self-sharpening; the normal mechanism by which dulled conventional abrasives are removed and a wheel’s surface refreshed. Because the wheel’s performance and condition is continually maintained inprocess by the Elid system, metal resin bonded (MRB) wheels containing very small super-abrasives can be used. It is the utilization of these fine abrasives (30 to 0.12 μm) that enables surface roughness values below 5 nm Ra to be consistently produced on the spherical surface of corrosion-resistant steel balls. This research provides an in-depth understanding of the Elid spherical superfinishing process; investigating the most effective use of the Elid system, wheel dressing requirements and process performance. Optimisation is provided in terms of evaluating the critical operating parameters, the most effective superfinishing cycle and the implications to the complete ball production chain. A range of techniques are used to evaluate processing performance and ball output quality. These include in-process monitoring of Elid and wheel spindle power levels, analysis of wheel condition, rates of ball surface generation and material removal, ball finish and form. Although predominantly concentrated on corrosion-resistant steel, testing is also conducted on titanium and various ball coatings. In investigating various ways of using the Elid system, this work considers electrodischarge truing, pre-process dressing, Elid 1, Elid 2, Elid 3, and Elid combined with electrolytically assisted superfinishing. The initial process solution of Elid 3 (electrodeless) superfinishing provides the capability of working on all standard size balls, however the dressing system lacks stability. The development of a fixturing system that has a small separate electrode enables Elid 1 (conventional) to be used on the majority of ball sizes. Elid 1 allows more aggressive and consistent dressing, a faster rate of ball material removal and thus a substantially reduced processing time. Results with a #12,000 wheel show that surface quality is vastly improved through the use of Elid whilst maintaining current production standards of form accuracy. Surface finishes of 2nm Ra are achieved, which is an order of magnitude better than balls currently produced using barrelling / polishing. Processing times are equivalent or faster when using Elid 1. Alternatively, consistently sub 10 nm Ra finishes can be reached with a #2,000 wheel using Elid 2 (interval dressing). Generally MRB-CBN wheels provide a more effective carbide cutting action than conventional superfinishing wheels. Controlling wheel condition and achieving full and even ball to wheel conformity are the two most significant contributory factors to the success of Elid spherical superfinishing. Insufficient control of these factors results in poor output quality. Monitoring of wheel spindle and Elid power usage provides useful information in assessing the condition of the wheel and identifying potential problems. High spindle power correlates with fast material removal and is a result of high loads and a free cutting action. Elid processing can be employed for improving surface finish after the conventional honing stage, or after cylindrical grinding for improving both ball form and finish.Item Open Access Manufacturing at double the speed(Elsevier, 2015-11-02) Allwood, Julian M.; Childs, Tom H. C.; Clare, Adam T.; De Silva, Anjali K. M.; Dhokia, Vimal; Hutchings, Ian M.; Leach, Richard K.; Leal-Ayala, David R.; Lowth, Stewart; Majewski, Candice E.; Marzano, Adelaide; Mehnen, Jorn; Nassehi, Aydin; Ozturk, Erdem; Raffles, Mark H.; Roy, Rajkumar; Shyha, Islam; Turner, SamThe speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing - with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices.