Browsing by Author "Rahmati, Omid"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Identifying source of dust aerosol using a new framework based on remote sensing and modelling(Elsevier, 2020-05-19) Rahmati, Omid; Mohammadi, Farnoush; Ghiasi, Seid Saeid; Tiefenbacher, John; Moghaddam, Davoud Davoudi; Coulon, Frederic; Nalivan, Omid Asadi; Bui, Dieu TienDust particles are transported globally. Dust storms can adversely impact both human health and the environment, but they also impact transportation infrastructure, agriculture, and industry, occasionally severely. The identification of the locations that are the primary sources of dust, especially in arid and semi-arid environments, remains a challenge as these sites are often in remote or data-scarce regions. In this study, a new method using state-of-the-art machine-learning algorithms – random forest (RF), support vector machines (SVM), and multivariate adaptive regression splines (MARS) – was evaluated for its ability to spatially model the distribution of dust-source potential in eastern Iran. To accomplish this, empirically identified dust-source locations were determined with the ozone monitoring instrument aerosol index and the Moderate-Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol optical thickness methods. The identified areas were divided into training (70%) and validation (30%) sets. Measurements of the conditioning factors (lithology, wind speed, maximum air temperature, land use, slope angle, soil, rainfall, and land cover) were compiled for the study area and predictive models were developed. The area-under-the-receiver operating characteristics curve (AUC) and true-skill statistics (TSS) were used to validate the maps of the models' predictions. The results show that the RF algorithm performed best (AUC = 89.4% and TSS = 0.751), followed by the SVM (AUC = 87.5%, TSS = 0.73) and the MARS algorithm (AUC = 81%, TSS = 0.69). The results of the RF indicated that wind speed and land cover are the most important factors affecting dust generation. The region of highest dust-source potential that was identified by the RF is in the eastern parts of the study region. This model can be applied to other arid and semi-arid environments that experience dust storms to promote management that prevents desertification and reduces dust production.Item Open Access A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination(Elsevier, 2018-07-11) Sajedi-Hosseini, Farzaneh; Malekian, Arash; Choubin, Bahram; Rahmati, Omid; Cipullo, Sabrina; Coulon, Frederic; Pradhan, BiswajeetThis study aimed to develop a novel framework for risk assessment of nitrate groundwater contamination by integrating chemical and statistical analysis for an arid region. A standard method was applied for assessing the vulnerability of groundwater to nitrate pollution in Lenjanat plain, Iran. Nitrate concentration were collected from 102 wells of the plain and used to provide pollution occurrence and probability maps. Three machine learning models including boosted regression trees (BRT), multivariate discriminant analysis (MDA), and support vector machine (SVM) were used for the probability of groundwater pollution occurrence. Afterwards, an ensemble modeling approach was applied for production of the groundwater pollution occurrence probability map. Validation of the models was carried out using area under the receiver operating characteristic curve method (AUC); values above 80% were selected to contribute in ensembling process. Results indicated that accuracy for the three models ranged from 0.81 to 0.87, therefore all models were considered for ensemble modeling process. The resultant groundwater pollution risk (produced by vulnerability, pollution, and probability maps) indicated that the central regions of the plain have high and very high risk of nitrate pollution further confirmed by the exiting landuse map. The findings may provide very helpful information in decision making for groundwater pollution risk management especially in semi-arid regions.Item Open Access Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNNEC methods(Elsevier, 2019-06-21) Rahmati, Omid; Choubin, Bahram; Fathabadi, Abolhasan; Coulon, Frederic; Soltani, Elinaz; Shahabi, Himan; Mollaefar, Eisa; Tiefenbacher, John; Cipullo, Sabrina; Bin Ahmad, Baharin; Tien Bui, DieuAlthough estimating the uncertainty of models used for modelling nitrate contamination of groundwater is essential in groundwater management, it has been generally ignored. This issue motivates this research to explore the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of uncertainty, was used to evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30% of the data). Both uncertainty and predictive performance criteria should be considered when comparing and selecting the best model. Results highlight that the kNN model is the best model because not only did it have the lowest uncertainty based on the PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85–0.91) methods, but it also had predictive performance statistics (RMSE = 10.63, R2 = 0.71) that were relatively similar to RF (RMSE = 10.41, R2 = 0.72) and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and consequently increases the reliability and credibility of groundwater-nitrate predictions.