Browsing by Author "Rasche, Stefan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding(Elsevier, 2021-03-10) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Zavašnik, Janez; Panchal, Vishal; Sidjanin, Leposava; Goel, SauravFriction stir spot welding (FSSW) is a solid-state welding process, wherein the properties of a weld joint are influenced by the state of friction and localised thermodynamic conditions at the tool-workpiece interface. An issue well-known about FSSW joints is their lack of reliability since they abruptly delaminate at the weld-faying interface (WFI). This study explores the origins of the delamination of multiple lap welded aluminium alloy (AA 5754-H111) sheets joined by FSSW at different rotational speeds typically used in industry. Experimental techniques such as the small punch test (SPT), Vickers hardness test, Scanning Electron Microscopy (SEM), Scanning Acoustic Microscope (SAM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and Frequency-Modulated Kelvin Probe Force Microscopy (FM-KPFM) were employed. The experimental results revealed that a complex interplay of stress-assisted metallurgical transformations at the intersection of WFI and the recrystallised stir zone (RSZ) can trigger dynamic precipitation leading to the formation of Al3Mg2 intermetallic phase, while metallic oxides and nanopits remain entrapped in the WFI. These metallurgical transformations surrounded by pits, precipitates and oxides induces process instability which in turn paves way for fast fracture to become responsible for delamination.Item Open Access Influence of tool geometry and process parameters on the properties of friction stir spot welded multiple (AA 5754 H111) aluminium sheets(MDPI, 2021-03-01) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Pecanac, Milan; Goel, SauravFriction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigation