Browsing by Author "Razafimbelo, Tantely"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Magnesium supply alleviates iron toxicity-induced leaf bronzing in rice through exclusion and tissue-tolerance mechanisms(Frontiers, 2023-07-21) Rajonandraina, Toavintsoa; Ueda, Yoshiaki; Wissuwa, Matthias; Kirk, Guy J. D.; Rakotoson, Tovohery; Manwaring, Hanna; Andriamananjara, Andry; Razafimbelo, TantelyIntroduction: Iron (Fe) toxicity is a widespread nutritional disorder in lowland rice causing growth retardation and leaf symptoms referred to as leaf bronzing. It is partly caused by an imbalance of nutrients other than Fe and supply of these is known to mitigate the toxicity. But the physiological and molecular mechanisms involved are unknown. Methods: We investigated the effect of magnesium (Mg) on Fe toxicity tolerance in a field study in the Central Highlands of Madagascar and in hydroponic experiments with excess Fe (300 mg Fe L-1). An RNA-seq analysis was conducted in a hydroponic experiment to elucidate possible mechanisms underlying Mg effects. Results and discussion: Addition of Mg consistently decreased leaf bronzing under both field and hydroponic conditions, whereas potassium (K) addition caused minor effects. Plants treated with Mg tended to have smaller shoot Fe concentrations in the field, suggesting enhanced exclusion at the whole-plant level. However, analysis of multiple genotypes showed that Fe toxicity symptoms were also mitigated without a concomitant decrease of Fe concentration, suggesting that increased Mg supply confers tolerance at the tissue level. The hydroponic experiments also suggested that Mg mitigated leaf bronzing without significantly decreasing Fe concentration or oxidative stress as assessed by the content of malondialdehyde, a biomarker for oxidative stress. An RNA-seq analysis revealed that Mg induced more changes in leaves than roots. Subsequent cis-element analysis suggested that NAC transcription factor binding sites were enriched in genes induced by Fe toxicity in leaves. Addition of Mg caused non-significant enrichment of the same binding sites, suggesting that NAC family proteins may mediate the effect of Mg. This study provides clues for mitigating Fe toxicity-induced leaf bronzing in rice.Item Open Access Mechanisms of genotypic differences in tolerance of iron toxicity in field-grown rice(Elsevier, 2023-04-28) Rajonandraina, Toavintsoa; Rakotoson, Tovohery; Wissuwa, Matthias; Ueda, Yoshiaki; Razafimbelo, Tantely; Andriamananjara, Andry; Kirk, Guy J. D.Iron (Fe) toxicity is a major constraint to rice yields in much of the world due to the greater solubility of reduced ferrous Fe in paddy soils compared with ferric Fe in aerobic soils and resulting excess uptake into the plants. There is genotypic variation in tolerance in Oryza gene pools, but so far only weak-effect alleles have been identified, largely because multiple critical physiological processes determine the tolerance. Most past research has been done in nutrient solution screens at the seedling stage, and not under field conditions over the full life cycle. We investigated tolerance mechanisms in a diverse set of genotypes under field conditions in a highly iron toxic soil in the Central Highlands of Madagascar. We made repeated plant samplings of young and old tissues throughout the growth period until maturity. Multiple mechanisms were involved, and the importance of different mechanisms changed between growth stages. Higher grain yields were mainly due to healthy vegetative growth, achieved either by reducing Fe uptake (exclusion) or by minimizing the effect of excess uptake through compartmentalization in older tissues and tissue tolerance. Exclusion mechanisms were relaxed during reproductive growth, leading to increased Fe accumulation in shoots. But tolerant genotypes were nonetheless able to grow well through a combination of Fe compartmentalization and tissue tolerance, so that grain filling could proceed relatively unimpeded. Tissue phosphorus (P) and potassium (K) concentrations were close to or below deficiency limits throughout growth. Exclusion by ferrous Fe oxidation in the rhizosphere will impede access of P and K ions to roots, but the differences in their tissue concentrations were much smaller than differences in growth rates, so growth rates evidently drove the uptake differences and responses to Fe toxicity were the more important constraints. There was no relation between grain yield and visual symptoms. To identify useful donors and markers for breeding it is important to develop screening protocols that capture the individual tolerance mechanisms, allowing for the effects of growth stage on their relative importance and expression, and possible interactions with other factors such as mineral nutrition. Selection for tolerance based on visual symptoms, particularly at the seedling stage, is overly simplistic, though it can be useful in the study of specific tolerance mechanisms.