Browsing by Author "Redfern, Sally P."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Biochemical profile of heritage and modern apple cultivars and application of machine learning methods to predict usage, age, and harvest season(American Chemical Society, 2017-06-02) Anastasiadi, Maria; Mohareb, Fady R.; Redfern, Sally P.; Berry, Mark; Simmonds, Monique; Terry, Leon AThe present study represents the first major attempt to characterise the biochemical profile in different tissues of a large selection of apple cultivars sourced from the UK’s National Fruit Collection comprising dessert, ornamental, cider and culinary apples. Furthermore, advanced Machine Learning methods were applied with the objective to identify whether the phenolic and sugar composition of an apple cultivar could be used as a biomarker fingerprint to differentiate between heritage and mainstream commercial cultivars as well as govern the separation among primary usage groups and harvest season. Prediction accuracy > 90% was achieved with Random Forest for all three models. The results highlighted the extraordinary phytochemical potency and unique profile of some heritage, cider and ornamental apple cultivars, especially in comparison to more mainstream apple cultivars. Therefore, these findings could guide future cultivar selection on the basis of health-promoting phytochemical content.Item Open Access Effect of UV-C on the physiology and biochemical profile of fresh Piper nigrum berries(Elsevier, 2017-11-10) Collings, Emma R.; Gavidia, M. Carmen Alamar; Cools, Katherine; Redfern, Sally P.; Terry, Leon AApplication of UV-C has been shown to enhance the biochemical profile of various plant materials. This could be used to increase biochemical load, reducing the amount of material required but still impart equivalent flavour. As spices, such as black pepper (Piper nigrum L.), are typically dried to low moisture content to create a stable product for transportation and storage, little work has explored the use of modern postharvest treatments to enhance flavour. In this work, fresh P. nigrum berries were exposed to four UV-C doses (0, 1, 5 and 15 kJ m−2) and subsequently stored at 5 °C for ca. 4 weeks. Two separate experiments (early and late season) were conducted across one season. Replicate P. nigrum berry clusters were stored separately within continuously ventilated 13 L boxes. Real-time respiration rate (ex situ), ethylene production, fruit colour and water potential were measured at regular intervals during storage. In addition, piperine and essential oils were assessed using a simple newly developed method which enabled both compound groups to be simultaneously extracted and subsequently quantified. UV-C was found to cause significant changes in colour (from green to brown) whilst also altering the biochemical composition (piperine and essential oils), which was influenced by UV-C dose and berry maturity. Low to medium UV-C doses could potentially enhance flavour compounds in black pepper enabling processors to create products with higher biochemical load.Item Open Access Harvest monitoring of Kenyan tea plantations with X-band SAR(IEEE, 2018-02-23) Snapir, Boris; Waine, Toby W.; Corstanje, Ronald; Redfern, Sally P.; De Silva, Jacquie; Kirui, CharlesTea is an important cash crop in Kenya, grown in a climatically restricted geographic area where climatic variability is starting to affect yield productivity levels. This paper assesses the feasibility of monitoring tea growth between, but also within fields, using X-band COSMO-SkyMed SAR images (five images at VV polarization and five images at HH polarization). We detect the harvested and nonharvested areas for each field, based on the loss of interferometric coherence between two images, with an accuracy of 52% at VV polarization and 74% at HH polarization. We then implement a normalization method to isolate the scattering component related to shoot growth and eliminate the effects of moisture and local incidence angle. After normalization, we analyze the difference in backscatter between harvested and nonharvested areas. At HH polarization, our backscatter normalization reveals a small decrease (∼0.1 dB) in HH backscatter after harvest. However, this decrease is too small for monitoring shoot growth. The decrease is not clear at VV polarization. This is attributed to the predominantly horizontal orientation of the harvested leaves.Item Open Access Spatial changes in leaf biochemical profile of two tea cultivars following cold storage under two different vapour pressure deficit (VPD) conditions(Elsevier, 2018-10-22) Collings, Emma R.; Alamar, M. Carmen; Redfern, Sally P.; Cools, Katherine; Terry, Leon AWithering is considered a crucial stage of black tea processing. In this study, tea shoots from two cultivars (cvs. Yabukita and Clone 2) were stored at 5 °C, in either a low or high vapour pressure deficit (VPD) environment, to determine the impact of different withering rates on physiology (viz. respiration rate [RR], colour and moisture loss) and biochemical profile (viz. individual catechins, methylxanthines) of tea shoots (Camellia sinensis). Low VPD and high VPD conditions during withering increased caffeine levels in Clone 2 and Yabukita, respectively (p < 0.05). Caffeine levels steadily increased over time in both cultivars (p < 0.05), coinciding with a rapid decline in theobromine (TB). Furthermore, stems contained lower epigallocatechin gallate (EGCG) and caffeine (ca. 75 and 56%, respectively) compared to bud and larger leaf (LL) (p < 0.05). Overall, the results of this study highlight factors such as mechanical harvesting, and hard or soft withering, which could affect final tea beverage quality.Item Open Access Tissue biochemical diversity of 20 gooseberry cultivars and the effect of ethylene supplementation on postharvest life(Elsevier, 2016-03-05) Anastasiadi, Maria; Mwangi, Paul M.; Ordaz-Ortiz, José J.; Redfern, Sally P.; Berry, Mark; Simmonds, Monique S.J.; Terry, Leon AThe European gooseberry (Ribes uva-crispa) is still an understudied crop with limited data available on its biochemical profile and postharvest life. A variety of polyphenols were detected in the skin and flesh of 20 gooseberry cvs, representing mainly flavonol glycosides, anthocyanins and flavan-3-ols. In contrast, gooseberry seeds were for the first time characterised by the presence of considerable amounts of hydroxycinnamic acid glycosides tentatively identified by UPLC-QToF/MS. All cvs examined represented a good source of vitamin C while being low in sugar. Furthermore, the postharvest stability of bioactives was explored by supplementation of exogenous ethylene in air at 5 °C. Results suggest a low sensitivity of gooseberries to ethylene. The overall quality of gooseberries remained stable over two weeks, showing potential for extended bioactive life.Item Open Access Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons(Elsevier, 2016-09-09) Fang, Rui; Redfern, Sally P.; Kirkup, Don; Porter, Elaine A.; Kite, Geoffrey C.; Terry, Leon A; Berry, Mark J.; Simmonds, Monique S.J.This is the first study to use chemometric methods to differentiate among 21 cultivars of Camellia sinensis from China and between leaves harvested at different times of the year using 30 compounds implicated in the taste and quality of tea. Unique patterns of catechin derivatives were observed among cultivars and across harvest seasons. C. sinensis var. pubilimba (You 510) differed from the cultivars of C. sinensis var. sinensis, with higher levels of theobromine, (+)-catechin, gallocatechin, gallocatechin gallate and theasinensin B, and lower levels of (−)-epicatechin, (−)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG), respectively. Three cultivars of C. sinensis var. sinensis, Fuyun 7, Qiancha 7 and Zijuan contained significantly more caffeoylquinic acids than others cultivars. A Linear Discriminant Analysis model based on the abundance of 12 compounds was able to discriminate amongst all 21 tea cultivars. Harvest time impacted the abundance of EGC, theanine and afzelechin gallate.