CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Roberts, L. S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Boundary-layer transition on wings in ground effect
    (2017-12) Roberts, L. S.; Finnis, Mark V.; Knowles, Kevin
    The competitiveness of a high-performance racing car is extremely reliant on aerodynamics. Due to the current economic climate, track testing is often forsaken and the majority of aerodynamic development carried out using sub-scale wind tunnel testing and computational simulations. It is important, therefore, that experimental and computational approaches represent real-world conditions as closely as possible. Although racing cars travel at much higher speeds than typical passenger cars, in comparison to aircrafts they still operate at relatively low Reynolds numbers and, consequently, laminar and transitional phenomena are evident. Despite this, the bulk of relevant literature available for racing-car aerodynamics is undertaken with little regard to the influence of Reynolds number, and in the case of computational studies, the omission of laminar and transitional phenomena all together. The present work has demonstrated, using a super-scale two- dimensional wind-tunnel model, that laminar and transition flow phenomenon are important at Reynolds numbers equivalent to a full-scale racing car. Moreover, the influence of these aspects increased as the wing’s ground clearance reduced; meaning that in ground effect they are even more important. Further experiments with three-dimensional models of varying complexity, from a simple single-element wing to a highly complex F1-specification wing, showed that laminar phenomena are important for F1 applications as well as for lower-downforce capability racing cars. A transition-sensitive eddy-viscosity turbulence model, k-kL-w, was used to simulate inverted wings operating in ground effect. It was shown that that laminar and transitional flow states could be simulated easily inside a commercial solver, and that the model offered a substantial improvement over the classical fully-turbulent k-w SST in terms of both force coefficient prediction and surface-flow structures. This experiments and computational simulations described in this thesis show the Reynolds number sensitivity of, and importance of laminar phenomenon on, wings operating in ground effect. It has been shown that laminar boundary layers are an important aspect of the flow characteristics of wings in ground effect, at both full-scale and model-scale Reynolds numbers. As such, it is recommended that future studies incorporate laminar and transitional phenomena.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Forcing boundary-layer transition on an inverted airfoil in ground effect
    (AIAA, 2017-07-21) Roberts, L. S.; Finnis, Mark V.; Knowles, Kevin; Lawson, Nicholas J.
    The influence of the laminar boundary-layer state on a wing operating in ground effect has been investigated using experiments with a model that provides two-dimensional flow. The effect of a boundary-layer trip placed at varying distances from the leading edge was observed at various incidences in terms of on-surface characteristics, including pressure measurements, flow visualization, and hot-film anemometry, and off-surface characteristics with velocity surveys below and behind the wing. The act of forcing transition led to downforce being reduced and drag increased, moreover, it altered almost all aspects of the wing’s aerodynamic characteristics, with the effect becoming greater as the trip was placed closer to the leading edge. These aspects include the replacement of a laminar separation bubble with trailing-edge separation, a thicker boundary layer, and a thicker wake with greater velocity deficit. The importance of considering laminar phenomena for wings operating in ground effect has been shown.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback