Browsing by Author "Samajdar, Indradev"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Orientation-dependent solid solution strengthening in zirconium: a nanoindentation study(Springer, 2019-12-17) Lodh, Arijit; Pant, Prita; Kumar, Gulshan; Mani Krishna, K. V.; Tewari, Raghvendra; Samajdar, IndradevOrientation-dependent solid solution strengthening was explored through a combined microtexture plus nanoindentation study. Pure zirconium (6N purity crystal-bar Zr) and commercial Zircaloy-2 were investigated for comparison. Local mechanical properties were estimated through finite element (FE) simulations of the unloading part of the nanoindentation load–displacement response. Combinations of ‘averaging’ scheme and constitutive relationship were used to resolve uncertainty of FE-extracted mechanical properties. Comparing the two grades, non-basal oriented grains showed an overall hardening and increase in elastic modulus. In contrast, insignificant change was observed for basal (or near-basal) oriented grains. The strengthening of non-basal orientations appeared via elimination of the lowest hardness/stiffness values without a shift in the peak value. Such asymmetric development brought out the clear picture of orientation-dependent solid solution strengthening in zirconium.Item Open Access X-ray diffraction for the determination of residual stress of crystalline material: an overview(Springer, 2022-03-07) Lodh, Arijit; Thool, Khushahal; Samajdar, IndradevThough there are a variety of experimental techniques available for residual stress measurements, diffraction-based measurements have the unique advantage of estimating the individual components of the residual strain matrix in a crystalline material. This is then converted to residual stresses with appropriate continuum elasticity model(s) and X-ray elastic constants. In particular, measurements based on electron or neutron diffractions have their complexities or availability issues. The laboratory X-ray diffraction, on the other hand, may provide an easy resource and an effective tool. Such measurements range from two tilt methods to more extended d-sin2ψ measurements and multiple {hkil} grazing incident X-ray diffraction. Measurements can even be conducted on single crystals with micro-Laue diffraction and extended to stress ODF (orientation distribution function) calculations. These techniques are unquestionably extremely specialized, where measurement uncertainty plays an important role in the effectiveness plus reproducibility of the data. Unfortunately, standard textbooks or review articles typically describe some, but not all, of the techniques. In this overview, different techniques of X-ray diffraction for the determination of residual stresses in crystalline material have been summarized. It is hoped that potential users may benefit from the deliberations.