Browsing by Author "Sasi, Sarath"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Ammonia for civil aviation: a design and performance study for aircraft and turbofan engine(Elsevier, 2024-04-06) Sasi, Sarath; Mourouzidis, Christos; Rajendran, David John; Roumeliotis, Ioannis; Pachidis, Vassilios; Norman, JustinThe 2050 net zero targets for aviation to decarbonize the industry means that solutions need to be delivered that can help achieve those targets. Transitioning to zero carbon aviation fuel is an effective solution to achieve those targets. This research article aims to highlight the potential design and performance implications of using Ammonia as a zero-carbon fuel for civil aviation through a retrofit case study conducted for an Airbus A350-1000 equivalent aircraft. The impacts on both turbofan design and aircraft payload-range capability are presented. A feasibility study of using Ammonia as a Hydrogen carrier for civil aviation is also presented. The turbofan design impacts, and payload range capability are assessed using Cranfield University’s in-house gas turbine performance tool TURBOMATCH and NASA FLOPS respectively. A 3-point turbofan cycle design strategy is utilized for redesigning turbofan engine cycles using Ammonia as a fuel. Ammonia fuel conditioning assessment is made using REFPROP to investigate its impact on turbofan design. Utilizing pure Ammonia as an aircraft fuel can provide significant turbofan redesign opportunities. Fuel conditioning assessment revealed that for a 430 kN thrust class engine, 2.1 MW of thermal power is required to condition Ammonia fuel at take-off. As a result, various strategies to condition the fuel and its significant impact on turbofan design are presented indicating fuel conditioning as a major design driver for Ammonia fuelled turbofan engines in the future. Although upon initial preliminary assessment, Ammonia utilized as a Hydrogen carrier showcased potential by providing additional mission range capability when compared to a pure Ammonia burning aircraft, the significant thermal energy required to crack (decompose) Ammonia into Hydrogen highlighted the challenges at aircraft mission level and Hydrogen turbofan design implications. It is found that energy requirement (power) to crack Ammonia into Hydrogen are significant which is approximately an order of magnitude higher than Ammonia fuel conditioning itself.Item Open Access Impacts of alternative aviation fuels on engine cycle design and aircraft mission capability(American Society of Mechanical Engineers, 2023-09-28) Sasi, Sarath; Mourouzidis, Christos; Roumeliotis, Ioannis; Nikolaidis, Theoklis; Pachidis, Vassilios; Norman, JustinRecent 2050 net zero targets for aviation have sparked interest among the industry players to seek alternative aviation fuels as a pathway for the immediate alleviation of its carbon footprint. This paper aims to shed light on the opportunities and challenges that zero & low-carbon alternative fuels can provide from a technical standpoint. To address this aim, candidate fuels for aviation were selected from five broad classes of fuels. Then, a preliminary thermodynamic engine cycle design space exploration of a modern three spool turbofan is conducted to identify the fuel impact on cycle performance. Following that, an integrated Engine-Aircraft mission assessment for a Boeing 787 style aircraft with a three spool turbofan is conducted to assess performance at the mission level and explore opportunities and challenges for both powerplant and aircraft, accounting for fuel storage. Finally, an investigation of the opportunities available for the proposed fuels to be used as a heat sink is presented. The results indicate that zero-carbon fuels expand the design space for the powerplant cycle, allow for higher BPR, lower energy specific fuel consumption, lower peak cycle temperatures compared to the rest of the fuels, and provide significant cycle redesign opportunities. On a mission level, cryogenic fuels are penalized for block energy consumption due to the significant weight and size of the fuel storage system, while liquid alternative fuels are comparable to kerosene in terms of emissions and block energy consumption. Concerning Hydrogen, Methane, and Ammonia, the thermal power requirement for fuel conditioning (pressure and temperature rise) is calculated to be 2.2MW, 1.3MW, and 1MW respectively for a 240kN SLS thrust class engine during take-off.Item Open Access A scalable hydrogen propulsion system for civil transport aircraft(ICAS, 2022-11-28) van Heerden, Albert S. J.; Sasi, Sarath; Ghelani, Raj; Sanders, Drewan S.; Roumeliotis, IoannisThe aim of this research was to explore the application of engineering systems evolvability analysis techniques in devising potential scalable hydrogen propulsion systems for future civil transport aircraft. Baseline and derivative aircraft concepts were generated for a medium-sized long-range aircraft, with the derivative options having different levels of hydrogen incorporated in a dual-fuel arrangement (with separate hydrogen and kerosene turbofans), as well as potential turboelectric propulsion with boundary layer ingestion. Commonality between each baseline-derivative pair was then estimated, which could be used to predict the derivative development cost savings that could potentially be obtained when working from a specific baseline. The performance and cost results enabled different future scenarios to be explored. It was shown that developing the future concepts based on an existing state-of-the aircraft as baseline can offer considerable cost savings, as opposed to designing a clean sheet version. The importance of the baseline configuration selection in reducing the development cost for the different hydrogen configurations was also highlighted.