CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shan, Q."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of a simulated gas leak in a wind tunnel
    (Iop Publishing Ltd, 2006-01-01T00:00:00Z) Hodgkinson, Jane; Shan, Q.; Pride, Russ D.
    This paper brings together considerations of gas leak behaviour and leak detector design and use, with a view to improving the detection of low-pressure natural gas leaks. An atmospheric boundary layer wind tunnel has been used to study ground-based releases of methane at full scale over distances of up to 3 m, under controlled conditions. These scales are relevant to the detection of natural gas leaks from mains and services using hand-portable gas detectors. The mean spatial distribution of the leaking gas plume was determined and used to test and fit a Gaussian dispersion model. This was used for subsequent analysis with respect to the ability of gas leak detectors to confirm and locate a leak. For ground-based leaks, gas concentrations drop rapidly with height such that instruments should ideally sample the air from within 100 mm of ground level. The rapid dilution of gas with distance from the source means that instruments with lower limits of detection, ideally of a few parts per million, have much improved ability to detect a leak from greater distances downwind. Finally, observations showed the variable temporal nature of the gas and the potential for confusion when sampling gas at a single point in time and space.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback