Browsing by Author "Sikarwar, Vineet Singh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access COVID-19 pandemic and global carbon dioxide emissions: A first assessment(Elsevier, 2021-07-01) Sikarwar, Vineet Singh; Reichert, Annika; Jeremias, Michal; Manovic, VasilijeAnthropogenic carbon dioxide emissions are the main cause of global climate change. The COVID-19 pandemic has been one of the worst of its kind in the last century with regard to global deaths and, in the absence of any effective treatment, it led to governments worldwide mandating lock-down measures, as well as citizens voluntarily reducing non-essential trips and activities. In this study, the influence of decreased activity on CO2 emissions and on the economy was assessed. The US, EU-28, China and India, representing almost 60% of anthropogenic carbon emissions, were considered as reference entities and the trends were extrapolated to estimate the global impact. This study aimed to deduce initial estimates of anthropogenic CO2 emissions based on the available economic and industrial outputs and activity data, as they could not be directly measured. Sector-wise variations in emissions were modeled by assuming proportionality of the outputs/activities and the resulting emissions. A decline in road traffic was seen up to March 2020 and then a steady growth was observed, with the exception of China where road traffic started to recover by the end of January. The vast majority of passenger flights were grounded and, therefore, global air traffic plummeted by 43.7% from January to May 2020. A considerable drop in coal power production and the annual industrial growth rate was also observed. The overall economic decline led to a drop of 4.9% in annual global gross domestic product (GDP) for Q2 2020. The total global CO2 emissions reduction for January through April 2020 compared to the year before was estimated to be 1749 Mt. CO2 (14.3%) with a maximum contribution from the transportation sector (58.3% among total emissions by sector). Like other previous crises, if the economy rebounds as expected the reductions will be temporary. Long-term impacts can be minimized considering the business as well as lifestyle changes for travel, utilizing virtual structures created during this crisis, and switching to sustainable transportation.Item Open Access Progress in biofuel production from gasification(Elsevier, 2017-04-06) Sikarwar, Vineet Singh; Zhao, Ming; Fennell, Paul S.; Shah, Nilay; Anthony, Edward J.Biofuels from biomass gasification are reviewed here, and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production, process design and integration and socio-environmental impacts of biofuel generation are discussed, with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol, bio-ethanol and higher alcohols, bio-dimethyl ether, Fischer Tropsch fuels, bio-methane, bio-hydrogen and algae-based fuels is reviewed, together with recent technologies, catalysts and reactors. Significant thermodynamic studies for each biofuel are also examined. Syngas cleaning is demonstrated to be a critical issue for biofuel production, and innovative pathways such as those employed by Choren Industrietechnik, Germany, and BioMCN, the Netherlands, are shown to allow efficient methanol generation. The conversion of syngas to FT transportation fuels such as gasoline and diesel over Co or Fe catalysts is reviewed and demonstrated to be a promising option for the future of biofuels. Bio-methane has emerged as a lucrative alternative for conventional transportation fuel with all the advantages of natural gas including a dense distribution, trade and supply network. Routes to produce H2 are discussed, though critical issues such as storage, expensive production routes with low efficiencies remain. Algae-based fuels are in the research and development stage, but are shown to have immense potential to become commercially important because of their capability to fix large amounts of CO2, to rapidly grow in many environments and versatile end uses. However, suitable process configurations resulting in optimal plant designs are crucial, so detailed process integration is a powerful tool to optimize current and develop new processes. LCA and ethical issues are also discussed in brief. It is clear that the use of food crops, as opposed to food wastes represents an area fraught with challenges, which must be resolved on a case by case basis.