CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Talluri, Lorenzo"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Design and optimization of a Tesla pump for ORC applications
    (Technical University of Munich, 2021-10-11) Anselmi Palma, Eduardo; Fiaschi, Daniele; Nicotra, Giovanni; Talluri, Lorenzo
    The Tesla pump is bladeless turbomachinery known for being more resistant to work with hard-to-pump fluids than conventional turbomachinery, thanks to its simple, robust mechanical design and its working principle (viscous forces). A 2D numerical model is developed and a design procedure of a Tesla pump working with several working fluids (water, R1233zd(E), R1234yf) is proposed. A complete design methodology is developed by evaluating the losses of each component and by introducing a rotor model. The main optimizing parameters of the pump are highlighted and assessed and validation of the model with available experimental results is carried out. A design procedure for a Tesla pump prototype is showed and its characteristic curves are obtained and discussed. The results achieved are similar to other experimental Tesla pumps, with a maximum achieved efficiency of 26.8%. The extension of the model to organic working fluids allowed to predict pump efficiencies higher than 50% for low mass flow rate conditions for both assessed fluids.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Flow field explorations in a boundary layer pump rotor for improving 1D design codes
    (MDPI, 2023-02-03) Freschi, Rosa; Bakogianni, Agapi; Rajendran, David John; Anselmi Palma, Eduardo; Talluri, Lorenzo; Roumeliotis, Ioannis
    Boundary layer pumps, although attractive due to their compactness, robustness and multi-fluid and phase-handling capability, have been reported to have low experimental efficiencies despite optimistic predictions from analytical models. A lower-order flow-physics-based analytical model that can be used as a 1D design code for sizing and predicting pump performance is described. The rotor component is modelled by means of the Navier–Stokes equations as simplified using velocity profiles in the inter-disk gap, while the volute is modelled using kinetic-energy-based coefficients inspired by centrifugal pumps. The code can predict the rotor outlet and overall pump pressure ratio with an around 3% and 10% average error, respectively, compared to the reference experimental data for a water pump. Moreover, 3D RANS flow-field explorations of the rotor are carried out for different inter-disk gaps to provide insights concerning the improvement of the 1D design code for the better prediction of the overall pump performance. Improvements in volute loss modelling through the inclusion of realistic flow properties at the rotor outlet rather than the detailed resolution of the velocity profiles within the rotor are suggested as guidelines for improved predictions. Such improved design codes could close the gap between predictions and experimental values, thereby paving the way for the appropriate sizing of boundary layer pumps for several applications, including aircraft thermal management.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanical design and manufacture of a boundary layer pump
    (EDP Sciences, 2023-08-25) Bufalari, Lapo; Anselmi Palma, Eduardo; Rinchi, Mirko; Howard, Kevin; Talluri, Lorenzo; Fiaschi, Daniele
    This paper describes the current efforts to develop and manufacture a first prototype for a boundary layer pump as a mean to assess future and more complex designs. Following an approach of “learning by doing”, a previous design was re-assessed from a mechanical/workshop point of view. Budget constraints and in-house manufacturing capabilities were taken into consideration to deliver a new design, suitable for quick production. Challenges such as disc holding, gap spacing, pump intake, discharge nozzles, and tolerances were addressed. Structural analysis has been conducted; where every single component has been modelled and sized accordingly to standard practices. As a support of structural analysis, FEM analysis was also performed with the aim of identifying, discussing, and fixing any potentially critical issues, particularly regarding the bolts holding together the discs into the power shaft. Finally, modal analysis was performed in order to test the dynamic response of the rotor: its critical frequencies would be far from the working range of the machine. This paper gives an overview of the critical issues to be taken into account during the mechanical design of boundary layer pump prototypes for different working fluids in the field of power generation and thermal management.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback