Browsing by Author "Tang, Yiwen"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access AMU-LED Cranfield flight trials for demonstrating the advanced air mobility concept(MDPI, 2023-08-31) Altun, Arinc Tutku; Hasanzade, Mehmet; Saldiran, Emre; Guner, Guney; Uzun, Mevlut; Fremond, Rodolphe; Tang, Yiwen; Bhundoo, Prithiviraj; Su, Yu; Xu, Yan; Inalhan, Gokhan; Hardt, Michael W.; Fransoy, Alejandro; Modha, Ajay; Tena, Jose Antonio; Nieto, Cesar; Vilaplana, Miguel; Tojal, Marta; Gordo, Victor; Menendez, Pablo; Gonzalez, AnaAdvanced Air Mobility (AAM) is a concept that is expected to transform the current air transportation system and provide more flexibility, agility, and accessibility by extending the operations to urban environments. This study focuses on flight test, integration, and analysis considerations for the feasibility of the future AAM concept and showcases the outputs of the Air Mobility Urban-Large Experimental Demonstration (AMU-LED) project demonstrations at Cranfield University. The purpose of the Cranfield demonstrations is to explore the integrated decentralized architecture of the AAM concept with layered airspace structure through various use cases within a co-simulation environment consisting of real and simulated standard-performing vehicle (SPV) and high-performing vehicle (HPV) flights, manned, and general aviation flights. Throughout the real and simulated flights, advanced U-space services are demonstrated and contingency management activities, including emergency operations and landing, are tested within the developed co-simulation environment. Moreover, flight tests are verified and validated through key performance indicator analysis, along with a social acceptance study. Future recommendations on relevant industrial and regulative activities are provided.Item Open Access Conflict probability based strategic conflict resolution for UAS traffic management(IEEE, 2023-11-10) Tang, Yiwen; Xu, Yan; Inalhan, GokhanIn this paper, we present a strategic conflict resolution method based on the conflict probability estimation, in the context of Unmanned Aircraft System (UAS) Traffic Management. We first elaborate a classic approach for flight trajectory generation in a designated realistic airspace environment, which is then smoothed by B-spline algorithm to achieve higher realism. The trajectories are extended to 4-dimensional Operational Volumes (OV) following the current UTM development visions. This forms the basis for performing a coarse conflict screening process, as the initial part for conflict detection, primarily based on identifying any OVs overlapping in temporal and spatial. Next, we look into the captured OVs and apply a well-studied conflict probability estimation approach, which contributes to a refined and more accurate conflict detection outcome. To resolve the potential conflicts, we propose two models including First-Come, First-Served (FCFS) and optimisation, both embedded with the probability-based conflict detection. In the FCFS approach, flights are delayed in the order of their submission, while the optimisation model aims at cherry-picking flights to seek the optimal solution. Numerical experiments with various case studies are performed to assess the effects with and without such probability concern, as well as different implementation strategies in real world. Results suggest that, allowing OVs’ overlapping to some extent does not necessarily incur conflict over an acceptable probability, whereas the efficiency of airspace use could be improved.Item Open Access Demonstrating advanced U-space services for urban air mobility in a co-simulation environment(2022-10-08) Fremond, Rodolphe; Tang, Yiwen; Bhundoo, Prithiviraj; Su, Yu; Tutku, Arinc; Xu, Yan; Inalhan, GokhanThe present paper formalises the development of a co-simulation environment aimed at demonstrating a number of advanced U-space services for the Air Mobility Urban - Large Experimental Demonstrations (AMU-LED) project. The environment has a visionary build that addresses Urban Air Mobility (UAM) challenges to support the High/Standard Performance Vehicles (HPV/SPV) operations within a complex urban environment by proposing an integrated solution that packages advanced services from the pre-flight to the in-flight phase in line with ongoing UAM Concept of Operations (ConOps). This setup opts for a holistic approach by promoting intelligent algorithmic design, artificial intelligence, robust serviceability through either virtual and live elements, and strong cooperation between the different services integrated, in addition to sustain interoperability with external U-space Service providers (USSP), Common Information Service providers (CISPs), and Air Traffic Controllers. The prototype has been recently showcased through the AMU-LED Cranfield (UK) demonstration activities.Item Open Access Developing a stackable programme based on the advanced air mobility systems MSc course(Elsevier, 2024-09-05) Zhao, Junjie; Gong, Tingyu; Nnamani, Christantus; Conrad, Christopher; Fremond, Rodolphe; Tang, Yiwen; Xu, Yan; Tsourdos, AntoniosThis study proposes the development of content and materials for a stackable programme that aligns with the existing Cranfield University Advanced Air Mobility Systems (AAMS) MSc Course and integrates with ongoing Future Flight Challenge (FFC) projects, emerging research and development (R&D) capacities, and the growing demand for skilled professionals in the sector. The programme is structured into four phases: enhancement of taught modules through technology-enhanced teaching (TET), enrichment of project-based learning, bolstering of student experience and career development, and a stackable approach adaptable to various educational levels. This approach was evaluated using courses from the 2022/23 and 2023/24 academic years.Item Open Access The development of an advanced air mobility flight testing and simulation infrastructure(MDPI, 2023-08-17) Altun, Arinc Tutku; Hasanzade, Mehmet; Saldiran, Emre; Guner, Guney; Uzun, Mevlut; Fremond, Rodolphe; Tang, Yiwen; Bhundoo, Prithiviraj; Su, Yu; Xu, Yan; Inalhan, Gokhan; Hardt, Michael W.; Fransoy, Alejandro; Modha, Ajay; Tena, Jose Antonio; Nieto, Cesar; Vilaplana, Miguel; Tojal, Marta; Gordo, Victor; Mendendez, Pablo; Gonzalez, AnaThe emerging field of Advanced Air Mobility (AAM) holds great promise for revolutionizing transportation by enabling the efficient, safe, and sustainable movement of people and goods in urban and regional environments. AAM encompasses a wide range of electric vertical take-off and landing (eVTOL) aircraft and infrastructure that support their operations. In this work, we first present a new airspace structure by considering different layers for standard-performing vehicles (SPVs) and high-performing vehicles (HPVs), new AAM services for accommodating such a structure, and a holistic contingency management concept for a safe and efficient traffic environment. We then identify the requirements and development process of a testing and simulation infrastructure for AAM demonstrations, which specifically aim to explore the decentralized architecture of the proposed concept and its use cases. To demonstrate the full capability of AAM, we develop an infrastructure that includes advanced U-space services, real and simulated platforms that are suitable for future AAM use cases such as air cargo delivery and air taxi operations, and a co-simulation environment that allows all of the AAM elements to interact with each other in harmony. The considered infrastructure is envisioned to be used in AAM integration-related efforts, especially those focusing on U-space service deployment over a complex traffic environment and those analyzing the interaction between the operator, the U-space service provider (USSP), and the air traffic controller (ATC).Item Open Access Incorporating optimisation in strategic conflict resolution service in U-space(SESAR, 2021-12-09) Tang, Yiwen; Xu, Yan; Inalhan, GokhanThis study presents an approach to incorporate optimisation in the strategic conflict resolution service in U-space. A conventional approach in line with the First-Come, First-Served (FCFS) rule is introduced, following the generation of two types of flight plans (i.e., linear and area operations) with uncertainty buffers further taken into account. This approach is based on iteratively checking the availability of the shared airspace volumes. Next, an optimisation model is formulated, using the same concept of common airspace representation, aiming at minimising the overall delay subject to operational constraints including a time-based separation minima. Some potential implementations are also envisioned for the optimisation model under plausible operational scenarios. Finally, simulation experiments are performed where four different case studies are designed, including FCFS and optimisation, as well as a hybrid use of both depending on the flight plans’ submission time. Results suggest that, compared to FCFS, a notable delay reduction can be achieved with the optimisation approach incorporated, which is due to the FCFS prioritisation scheme that is often not efficient.Item Open Access Incorporating optimization in strategic conflict resolution for UAS traffic management(IEEE, 2023-07-13) Tang, Yiwen; Xu, YanThis study presents an approach to incorporate optimisation in the strategic conflict resolution service for unmanned aircraft systems (UAS) traffic management. A conventional approach in line with the First-Come, First-Served (FCFS) principle is introduced, following the generation of two types of flight plans (i.e., linear and area operations) with uncertainty buffers further taken into account. This approach is based on iteratively checking the availability of the shared airspace volumes. Next, an optimisation model is formulated, using the same common airspace representation, aiming at minimising the overall delay and deviation to the equivalent FCFS solution (i.e., fairness concern), subject to operational constraints including a time-based separation minima. Some potential implementations are also envisioned for the optimisation model under plausible operational scenarios. Finally, simulation experiments are performed where five case studies are designed, including FCFS and optimisation, as well as their hybrid and batch uses depending on the flight plan submission time. Sensitivity analysis is conducted to assess the impact of some specific model assumptions. Results suggest that, compared to FCFS, a notable delay reduction can be achieved with optimisation incorporated, which is due to the FCFS prioritisation scheme that is often not efficient.Item Open Access An integrated approach for on-demand dynamic capacity management service in U-space(IEEE, 2022-03-15) Tang, Yiwen; Xu, Yan; Inalhan, GokhanThis paper presents an integrated approach for on-demand Dynamic Capacity Management (DCM) service to be offered in U-space. The approach involves three main threads, including flight planning (demand), airspace configuration (capacity) and demand-capacity balancing (DCB). The flight planning thread produces UAS (unmanned aerial systems) trajectories for each flight that together reflect the estimated traffic demand. The airspace configuration thread defines the fundamental airspace structure and proposes dynamic adjustment schemes that determine the capacity distribution. It also enables the flight planning to reschedule alternative trajectory options to route away from possible congested areas. The last DCB thread takes the previous inputs and then computes for the optimal slot allocation and trajectory selection, as well as the optimal airspace configuration. Simulation case studies have been performed through mimicking an envisioned U-space operating scenario. Results suggest that the integrated approach can achieve the best outcome in almost all the key performance areas than any other cases where only partial functions are realised.