CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tello, Carlos"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impact of fluid substitution on the performance of an axial compressor blade cascade working with supercritical carbon dioxide
    (ASME, 2019-12-11) Tello, Carlos; Muñoz, Alejandro; Sánchez, David; Kipouros, Timoleon; Savill, Mark
    Recent research on turbomachinery design and analysis for supercritical Carbon Dioxide (sCO2) power cycles has relied on Computational Fluid Dynamics. This has produced a large number of works whose approach is mostly case-specific, rather than of general application to sCO2 turbomachinery design. As opposed to such approach, this work explores the aerodynamic performance of compressor blade cascades operating on air and supercritical CO2 with the main objective to evaluate the usual aerodynamic parameters of the cascade for variable boundary conditions and geometries, enabling 'full' or 'partial' similarity. The results present both the global performance of the cascades and certain features of the local flow (trailing edge and wake). The discussion also highlights the mechanical limitations of the analysis (forces exerted on the blades), which is the main restriction to applying similarity laws to extrapolate the experi- ence gained through decades of work on air turbomachinery to the new working fluid. This approach is a step towards the understanding and appropriate formulation of a multi-objective optimisation problem for the design of such turbomachinery components where sCO2 is used as the operating fluid. With this objective, the paper aims to identify and analyse what would be expected if a common description of such computational design problems similar to those where air is the working fluid were used.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback