Browsing by Author "Tu, Jianxin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries(Elsevier, 2020-01-08) Tu, Jianxin; Li, Hejun; Lan, Tongbin; Zeng, Shao-Zhong; Zou, Jizhao; Zhang, Qi; Zeng, XierongHerein, we present a microwave reduction strategy for the synthesis of reduced-graphene-oxide (rGO) supported TiN nanoparticle hybrid (TiN/rGO) under N2 atmosphere. The method involves GO reduction, metal oxide reduction and nitridation reaction in one single step. Due to TiN high conductivity and good interfacial affinity between it and lithium polysulfides (LiPSs), the prepared TiN/rGO-Sulfur (TiN/rGO-S) cathodes demonstrate rapid charge transfer, lower polarization, faster surface redox reaction kinetic and enhanced stability cycling performance than rGO-Sulfur (rGO-S) and TiO2/rGO-Sulfur (TiO2/rGO-S) cathodes. The initial capacity reaches 1197.6 mA h g−1 with a reversible capacity of 888.7 mA h g−1 being retained after 150 cycles at 0.1 C.Item Open Access Microwave-assisted rapid preparation of hollow carbon nanospheres@TiN nanoparticles for lithium-sulfur batteries(Royal Society of Chemistry, 2018-11-02) Tu, Jianxin; Li, HeJun; Zou, Jizhao; Zeng, Shao-Zhong; Zhang, Qi; Yu, Liang; Zenga, XierongHighly conductive titanium nitride (TiN) has a strong anchoring ability for lithium polysulfides (LiPSs). However, the complexity and high cost of fabrication limit their practical applications. Herein, a typical structure of hollow carbon nanospheres@TiN nanoparticles (HCNs@TiN) was designed and successfully synthesized via a microwave reduction method with the advantages of economy and efficiency. With unique structural and outstanding functional behavior, HCN@TiN-S hybrid electrodes display not only a high initial discharge capacity of 1097.8 mA h g−1 at 0.1C, but also excellent rate performance and cycling stability. After 200 cycles, a reversible capacity of 812.6 mA h g−1 is still retained, corresponding to 74% capacity retention of the original capacity and 0.13% decay rate per cycle, which are much better than those of HCNs-S electrodes.