CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wainwright, James"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Control of meltpool shape in laser welding
    (Springer, 2024-03-05) Suder, Wojciech; Chen, Xin; Rico Sierra, David; Chen, Guangyu; Wainwright, James; Rajamudili, Kuladeep; Rodrigues Pardal, Goncalo; Williams, Stewart
    In laser welding, the achievement of high productivity and precision is a relatively easy task; however, it is not always obvious how to achieve sound welds without defects. The localised laser energy promotes narrow meltpools with steep thermal gradients, additionally agitated by the vapour plume, which can potentially lead to many instabilities and defects. In the past years, there have been many techniques demonstrated on how to improve the quality and tolerance of laser welding, such as wobble welding or hybrid processes, but to utilise the full potential of lasers, we need to understand how to tailor the laser energy to meet the process and material requirements. Understanding and controlling the melt flow is one of the most important aspects in laser welding. In this work, the outcome of an extensive research programme focused on the understanding of meltpool dynamics and control of bead shape in laser welding is discussed. The results of instrumented experimentation, supported by computational fluid dynamic modelling, give insight into the fundamental aspects of meltpool formation, flow direction, feedstock melting and the likelihood of defect formation in the material upon laser interaction. The work contributes to a better understanding of the existing processes, as well as the development of a new range of process regimes with higher process stability, improved efficiency and higher productivity than standard laser welding. Several examples including ultra-stable keyhole welding and wobble welding and a highly efficient laser wire melting are demonstrated. In addition, the authors present a new welding process, derived from a new concept of the meltpool flow and shape control by dynamic beam shaping. The new process has proven to have many potential advantages in welding, cladding and repair applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Knowledge-based bidirectional thermal variable modelling for directed energy deposition additive manufacturing
    (Informa UK Limited, 2024-09-05) Qin, Jian; Taraphdar, Pradeeptta; Sun, Yongle; Wainwright, James; Lai, Wai Jun; Feng, Shuo; Ding, Jialuo; Williams, Stewart
    Directed energy deposition additive manufacturing (DED-AM) has gained significant interest in producing large-scale metallic structural components. In this paper, a knowledge-based machine learning (ML) approach, combining both physics-based simulation and data-driven modelling, is proposed for a study on thermal variables of DED-AM. This approach enables both forward and backward predictions, which breaks down the barriers between the basic process parameters and key process attributes. Process knowledge plays a critical role to enable the prediction and enhance the accuracy in both prediction directions. The proposed ML approach successfully predicted the thermal variables of wire arc based DED-AM for forward modelling and the process parameters for backward modelling, typically within 7% errors. This approach can be further generalised as a powerful modelling tool for design, control, and evaluation of DED-AM processes regarding build geometry and properties, as well as an essential constituent element in a digital twin of a DED-AM system.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Refinement of Ti-6Al-4V prior-β grain structure in the as-deposited condition via process control during wire-direct energy deposition
    (Elsevier, 2023-08-10) Wainwright, James; Williams, Stewart; Ding, Jialuo
    This study demonstrates that refinement of the prior-β grains generated during the wire-direct energy deposition of Ti‐6Al‐4V is achievable whilst maintaining a stable processing condition in the as-deposited condition, not reliant on penetration of the feedstock to the melt pool. Previous studies on prior-β grain refinement of Ti‐6Al‐4V have been reliant on either post-processing, alloy modification or agitation of the melt pool to achieve refinement. Through process control alone, it was identified that an increase in the deposition rate for a fixed energy input led to a reduction in the specific energy density of deposited material. Utilising pyrometry, it was determined that the reduction in the specific energy density led to a decrease in the thermal gradient, measured using a linear thermal gradient approximation, encouraging apparent homogenous nucleation within the melt pool. Whilst maintaining a stable ‘droplet’ transfer mode, the gradual reduction in specific energy density transformed the grain structure from the typical columnar morphology through a mixed morphology to an equiaxed grain morphology; confirmed via prior-β grain reconstructions and inverse pole figure analysis made possible by electron back scattered diffraction microscopy of the deposited samples. Microhardness measurements demonstrated larger variations in the refined prior-β grain specimens as compared to the columnar as a result of more complex α morphologies generated.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback