Browsing by Author "Wang, Fei-Yue"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Open Access Advances in vision-based lane detection: algorithms, integration, assessment, and perspectives on ACP-based parallel vision(IEEE, 2018-05-01) Xing, Yang; Lv, Chen; Chen, Long; Wang, Huaji; Wang, Hong; Cao, Dongpu; Velenis, Efstathios; Wang, Fei-YueLane detection is a fundamental aspect of most current advanced driver assistance systems (ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous vision-based lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system, and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.Item Open Access CogEmoNet: A cognitive-feature-augmented driver emotion recognition model for smart cockpit(IEEE, 2021-11-30) Li, Wenbo; Zeng, Guanzhong; Zhang, Juncheng; Xu, Yan; Xing, Yang; Zhou, Rui; Guo, Gang; Shen, Yu; Cao, Dongpu; Wang, Fei-YueDriver's emotion recognition is vital to improving driving safety, comfort, and acceptance of intelligent vehicles. This article presents a cognitive-feature-augmented driver emotion detection method that is based on emotional cognitive process theory and deep networks. Different from the traditional methods, both the driver's facial expression and cognitive process characteristics (age, gender, and driving age) were used as the inputs of the proposed model. Convolutional techniques were adopted to construct the model for driver's emotion detection simultaneously considering the driver's facial expression and cognitive process characteristics. A driver's emotion data collection was carried out to validate the performance of the proposed method. The collected dataset consists of 40 drivers' frontal facial videos, their cognitive process characteristics, and self-reported assessments of driver emotions. Another two deep networks were also used to compare recognition performance. The results prove that the proposed method can achieve well detection results for different databases on the discrete emotion model and dimensional emotion model, respectively.Item Open Access Driver activity recognition for intelligent vehicles: a deep learning approach(IEEE, 2019-04-01) Xing, Yang; Lv, Chen; Wang, Huaji; Cao, Dongpu; Velenis, Efstathios; Wang, Fei-YueDriver decisions and behaviors are essential factors that can affect the driving safety. To understand the driver behaviors, a driver activities recognition system is designed based on the deep convolutional neural networks (CNN) in this study. Specifically, seven common driving activities are identified, which are the normal driving, right mirror checking, rear mirror checking, left mirror checking, using in-vehicle radio device, texting, and answering the mobile phone, respectively. Among these activities, the first four are regarded as normal driving tasks, while the rest three are classified into the distraction group. The experimental images are collected using a low-cost camera, and ten drivers are involved in the naturalistic data collection. The raw images are segmented using the Gaussian mixture model (GMM) to extract the driver body from the background before training the behavior recognition CNN model. To reduce the training cost, transfer learning method is applied to fine tune the pre-trained CNN models. Three different pre-trained CNN models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted and evaluated. The detection results for the seven tasks achieved an average of 81.6% accuracy using the AlexNet, 78.6% and 74.9% accuracy using the GoogLeNet and ResNet50, respectively. Then, the CNN models are trained for the binary classification task and identify whether the driver is being distracted or not. The binary detection rate achieved 91.4% accuracy, which shows the advantages of using the proposed deep learning approach. Finally, the real-world application are analysed and discussed.Item Open Access Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges(IEEE, 2019-03-06) Xing, Yang; Lv, Chen; Wang, Huaji; Wang, Hong; Ai, Yunfeng; Cao, Dongpu; Velenis, Efstathios; Wang, Fei-YueIntelligent vehicles and advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver status since ADAS share the vehicle control authorities with the human driver. This study provides an overview of the ego-vehicle driver intention inference (DII), which mainly focus on the lane change intention on highways. First, a human intention mechanism is discussed in the beginning to gain an overall understanding of the driver intention. Next, the ego-vehicle driver intention is classified into different categories based on various criteria. A complete DII system can be separated into different modules, which consists of traffic context awareness, driver states monitoring, and the vehicle dynamic measurement module. The relationship between these modules and the corresponding impacts on the DII are analyzed. Then, the lane change intention inference (LCII) system is reviewed from the perspective of input signals, algorithms, and evaluation. Finally, future concerns and emerging trends in this area are highlighted.Item Open Access Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey(IEEE, 2017-07-04) Marina Martinez, Clara; Heucke, Mira; Wang, Fei-Yue; Gao, Bo; Cao, DongpuDriver driving style plays an important role in vehicle energy management as well as driving safety. Furthermore, it is key for advance driver assistance systems development, toward increasing levels of vehicle automation. This fact has motivated numerous research and development efforts on driving style identification and classification. This paper provides a survey on driving style characterization and recognition revising a variety of algorithms, with particular emphasis on machine learning approaches based on current and future trends. Applications of driving style recognition to intelligent vehicle controls are also briefly discussed, including experts' predictions of the future development.Item Open Access Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving(IEEE, 2018-08-14) Guo, Hongyan; Song, Linhuan; Liu, Jun; Wang, Fei-Yue; Cao, Dongpu; Chen, Hong; Lv, Chen; Luk, Patrick Chi-KwongPrompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization. The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation, the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner. The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.Item Open Access Identification and analysis of driver postures for in-vehicle driving activities and secondary tasks recognition(IEEE, 2018-12-25) Xing, Yang; Lv, Chen; Zhang, Zhaozhong; Wang, Huaji; Na, Xiaoxiang; Cao, Dongpu; Velenis, Efstathios; Wang, Fei-YueDriver decisions and behaviors regarding the surrounding traffic are critical to traffic safety. It is important for an intelligent vehicle to understand driver behavior and assist in driving tasks according to their status. In this paper, the consumer range camera Kinect is used to monitor drivers and identify driving tasks in a real vehicle. Specifically, seven common tasks performed by multiple drivers during driving are identified in this paper. The tasks include normal driving, left-, right-, and rear-mirror checking, mobile phone answering, texting using a mobile phone with one or both hands, and the setup of in-vehicle video devices. The first four tasks are considered safe driving tasks, while the other three tasks are regarded as dangerous and distracting tasks. The driver behavior signals collected from the Kinect consist of a color and depth image of the driver inside the vehicle cabin. In addition, 3-D head rotation angles and the upper body (hand and arm at both sides) joint positions are recorded. Then, the importance of these features for behavior recognition is evaluated using random forests and maximal information coefficient methods. Next, a feedforward neural network (FFNN) is used to identify the seven tasks. Finally, the model performance for task recognition is evaluated with different features (body only, head only, and combined). The final detection result for the seven driving tasks among five participants achieved an average of greater than 80% accuracy, and the FFNN tasks detector is proved to be an efficient model that can be implemented for real-time driver distraction and dangerous behavior recognition.Item Open Access Levenberg-Marquardt backpropagation training of multilayer neural networks for state estimation of a safety critical cyber-physical system(IEEE, 2017-11-24) Lv, Chen; Xing, Yang; Zhang, Junzhi; Na, Xiaoxiang; Li, Yutong; Liu, Teng; Cao, Dongpu; Wang, Fei-YueAs an important safety critical cyber-physical system (CPS), the braking system is essential to the safe operation of the electric vehicle. Accurate estimation of the brake pressure is of great importance for automotive CPS design and control. In this paper, a novel probabilistic estimation method of brake pressure is developed for electrified vehicles based on multilayer Artificial Neural Networks (ANN) with Levenberg-Marquardt Backpropagation (LMBP) training algorithm. Firstly, the high-level architecture of the proposed multilayer ANN for brake pressure estimation is illustrated. Then, the standard backpropagation (BP) algorithm used for training of the feed-forward neural network (FFNN) is introduced. Based on the basic concept of backpropagation, a more efficient training algorithm of LMBP method is proposed. Next, real vehicle testing is carried out on a chassis dynamometer under standard driving cycles. Experimental data of the vehicle and the powertrain systems are collected, and feature vectors for FFNN training collection are selected. Finally, the developed multilayer ANN is trained using the measured vehicle data, and the performance of the brake pressure estimation is evaluated and compared with other available learning methods. Experimental results validate the feasibility and accuracy of the proposed ANN-based method for braking pressure estimation under real deceleration scenarios.Item Open Access Milestones in autonomous driving and intelligent vehicles - Part 1: control, computing system design, communication, HD map, testing, and human behaviors(IEEE, 2023-05-29) Chen, Long; Li, Yuchen; Huang, Chao; Xing, Yang; Tian, Daxin; Li, Li; Hu, Zhongxu; Teng, Siyu; Lv, Chen; Wang, Jinjun; Cao, Dongpu; Zheng, Nanning; Wang, Fei-YueInterest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks and lack systematic summaries and research directions in the future. Our work is divided into three independent articles and the first part is a survey of surveys (SoS) for total technologies of AD and IVs that involves the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. This is the second part (Part 1 for this technical survey) to review the development of control, computing system design, communication, high-definition map (HD map), testing, and human behaviors in IVs. In addition, the third part (Part 2 for this technical survey) is to review the perception and planning sections. The objective of this article is to involve all the sections of AD, summarize the latest technical milestones, and guide abecedarians to quickly understand the development of AD and IVs. Combining the SoS and Part 2, we anticipate that this work will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.Item Open Access Milestones in autonomous driving and intelligent vehicles: survey of surveys(IEEE, 2022-11-24) Chen, Long; Li, Yuchen; Huang, Chao; Li, Bai; Xing, Yang; Tian, Daxin; Li, Li; Hu, Zhongxu; Na, Xiaoxiang; Li, Zixuan; Teng, Siyu; Lv, Chen; Wang, Jinjun; Cao, Dongpu; Zheng, Nanning; Wang, Fei-YueInterest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks, lack of systematic summary and research directions in the future. Here we propose a Survey of Surveys (SoS) for total technologies of AD and IVs that reviews the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. To our knowledge, this article is the first SoS with milestones in AD and IVs, which constitutes our complete research work together with two other technical surveys. We anticipate that this article will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.Item Open Access Parallel driving in CPSS: a unified approach for transport automation and vehicle intelligence(IEEE, 2017-09-15) Wang, Fei-Yue; Zheng, Nan-Ning; Cao, Dongpu; Martinez, Clara Marina; Li, Li; Liu, TengThe emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems U+0028 CPSS U+0029 framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space, considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon U+0028 iHorizon U+0028 and its applications are also presented towards parallel horizon. The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.Item Open Access Simultaneous observation of hybrid states for cyber-physical systems: a case study of electric vehicle powertrain(IEEE, 2017-08-22) Lv, Chen; Liu, Yahui; Hu, Xiaosong; Guo, Hongyan; Cao, Dongpu; Wang, Fei-YueAs a typical cyber-physical system (CPS), electrified vehicle becomes a hot research topic due to its high efficiency and low emissions. In order to develop advanced electric powertrains, accurate estimations of the unmeasurable hybrid states, including discrete backlash nonlinearity and continuous half-shaft torque, are of great importance. In this paper, a novel estimation algorithm for simultaneously identifying the backlash position and half-shaft torque of an electric powertrain is proposed using a hybrid system approach. System models, including the electric powertrain and vehicle dynamics models, are established considering the drivetrain backlash and flexibility, and also calibrated and validated using vehicle road testing data. Based on the developed system models, the powertrain behavior is represented using hybrid automata according to the piecewise affine property of the backlash dynamics. A hybrid-state observer, which is comprised of a discrete-state observer and a continuous-state observer, is designed for the simultaneous estimation of the backlash position and half-shaft torque. In order to guarantee the stability and reachability, the convergence property of the proposed observer is investigated. The proposed observer are validated under highly dynamical transitions of vehicle states. The validation results demonstrates the feasibility and effectiveness of the proposed hybrid-state observer.