CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Winward, Gideon Paul"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Disinfection of grey water
    (Cranfield University, 2007-10) Winward, Gideon Paul; Stephenson, Tom
    The reuse of grey water, for applications such as toilet flushing and irrigation, represents a potential sustainable solution to water shortages experienced by regions worldwide. Although reused grey water is not intended for potable use, the potential for transmission of waterborne pathogens by aerosol inhalation, topical contact, or indirect ingestion is a key concern for grey water reuse. This thesis explores the pathogen content of grey water and investigates pathogen removal through treatment and disinfection processes. The impacts of organic and particulate material in grey water on the efficacy of disinfection processes are investigated in depth. Grey water can potentially harbour a range of pathogenic microorganisms, with opportunistic bacterial pathogens in grey water indicating a particular risk of grey water reuse for the vulnerable members of society. The disinfection of grey water is therefore critical prior to reuse. Particulate material in grey water limits the efficacy of disinfection by chlorine, ultraviolet light, and origanum essential oil, by shielding microorganisms from the applied disinfectant. Microbial resistance to the disinfectants was linked to the particle size distribution of the grey water, with increasing particle size offering greater protection to associated microorganisms. Additional organic material was shown to reduce the applied disinfectant but no impact on microorganism resistance to disinfection was observed when a constant disinfectant dose was maintained. Treatment of grey water, targeting the removal of large particulate material, improves the efficacy of grey water disinfection, allowing compliance with stringent microbiological standards for urban water reuse.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback