Browsing by Author "Wright, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Factory modelling: combining energy modelling for buildings and production systems(Springer, 2013-12-31) Ball, Peter D.; Despeisse, Melanie; Evans, Stephen; Greenough, Richard M.; Hope, Steve B.; Kerrigan, Ruth; Levers, A.; Lunt, Peter A. V.; Murray, Vincent; Oates, Michael R.; Shao, Li; Waltniel, Timothy; Wright, A.Traditionally, manufacturing facilities and building services are analysed separately to manufacturing operations. This is despite manufacturing operations using and discarding energy with the support of facilities. Therefore improvements in energy and other resource use to work towards sustainable manufacturing have been sub-optimal. This paper presents research in which buildings, facilities and manufacturing operations are viewed as inter-related systems. The objectives are to improve overall resource efficiency and to exploit opportunities to use energy and / or waste from one process as potential inputs to other processes. The novelty here is the combined simulation of production and building energy use and waste in order to reduce overall resource consumption. The paper presents a literature review, develops the conceptual modelling approach and introduces the prototype IES Ltd THERM software. The work has been applied to industrial cases to demonstrate the ability of the prototype to support activities towards sustainable manufacturing.Item Open Access Tyre / soil interaction modelling within a virtual proving ground environment(Cranfield University, 2012-01) Wright, A.; Brighton, James L.Off-road mobility defines the ability of land-based vehicles to accelerate, pull loads and climb gradients. Historically, much of the work completed to relate mobility to vehicle and terrain characteristics has been empirical in nature, and has therefore been susceptible to errors caused by the inherent variability of naturally occurring soils. This thesis addresses the off-road mobility of wheeled vehicles, and in particular the use of a finite element (FE) based approach to predict performance metrics such as rolling resistance, drawbar pull and tractive efficiency. Tools to predict these measures of performance have a wide range of applications, including military, agricultural and leisure vehicles, aircraft operating from temporary airfields and planetary landing craft. The current study extends the virtual proving ground (VPG) concept, where a single vehicle model can be subjected to a series of virtual test conditions, to include the assessment of off-road mobility. Throughout, modelling has been carried out using LS-DYNA, a commercially available non-linear dynamic analysis code. Unlike previous studies using FE techniques to investigate wheel / soil interaction, an Eulerian representation of the soil has been employed, which permits a consistent approach to be applied to both purely cohesive and purely frictional soils, as well as those displaying a combination of cohesive and frictional behaviour. At each stage of the research, the validity of the FE-based modelling approach has been assessed using data from controlled experimental testing at Cranfield University’s off-road dynamics facility. A key finding of the work completed is that rate sensitivity in moisture containing soils can significantly affect the accuracy of (empirical, analytical and numerical) model predictions, even at low translational speeds (less than 0.1m/s). This finding highights the adverse impact of simplifications in many previous experimental and modelling studies, which have assumed that rate effects may be ignored providing the translational speed of the vehicle is low.