CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wu, Weizhou"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of fiber orientation on tool wear evolution and wear mechanism when cutting carbon fiber reinforced plastics
    (Elsevier, 2022-09-07) Wu, Weizhou; Li, Shipeng; Qin, Xuda; Liu, Wentao; Cui, Xin; Li, Hao; Shi, Mengrui; Liu, Haibao
    The aim of the present paper is to reveal the influence of different fiber orientations on the tool wear evolution and wear mechanism. Side-milling experiments with large-diameter milling tools are conducted. A finite element (FE) cutting model of carbon fiber reinforced plastics (CFRP) is established to get insight into the cutting stress status at different wear stages. The results show that different fiber orientations bring about distinct differences in the extent, profile and mechanism of tool wear. Severer wear occurs when cutting 45° and 90° plies, followed by 0°, correspondingly, the least wear is obtained when θ = 135° (θ represents the orientation of fibers). Moreover, the worn profiles of cutting tools when θ = 0° and 45° are waterfall edge, while round edge occurs when θ = 135° and a combined shape of waterfall and round edge is obtained when θ = 90°. The wear mechanisms under different fiber orientations are strongly dependent on the cutting stress distributions. The evolution of tool wear profile is basically consistent with the stress distribution on the tool surface at different wear stages, and the extent of tool wear is determined by the magnitude of stress on the tool surface. Besides, the worn edges produce an actual negative clearance angle, which decreases the actual cutting thickness and leads to compressing and bending failure of fibers beneath the cutting region as well as low surface qualities.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimization of multi-tooth milling tool for interlaminar damage suppression in the milling of carbon fiber–reinforced polymers
    (Springer, 2022-05-27) Liu, Jian; Tang, Xinkai; Li, Shipeng; Qin, Xuda; Li, Hao; Wu, Weizhou; Srijana, Yadav; Liu, Wentao; Liu, Haibao
    Carbon fiber–reinforced polymers (CFRP) are widely utilized in the aerospace field due to their significant specific strength, specific modulus, and strong design ability. However, anisotropy and low interlaminar bonding strength lead to burr, tear, lamination, and other damages in CFRP machining. In this paper, a 3D finite element model for the milling of CFRP was carefully developed, and the cutting forces, the interlaminar stress, and the interlaminar damage were properly obtained. Typically based on the developed model, the effects of geometric parameters of the multi-tooth milling tool were precisely analyzed. Next tool geometries were optimized for suppressing the interlaminar damage in the milling of CFRP. Results convincingly show that the multi-tooth milling tool with the geometry of 1.4 mm length of the micro tooth, 38.2° left helix angle, 11 left-handed chip grooves, 15° right helix angle, 12 right-handed helix grooves, approximately rectangular of section shape of the chip groove, 10° rake angle, and 15° clearance angle efficiently delivers the optimal performance. Besides, cutting performance of numerous coated tools was also studied. Results typically show that the multi-tooth milling tool with a diamond coating maintains significant advantages in aspects of the tool life and costs compared with the uncoated and diamond-like carbon coating (DLC)-coated tools.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback