Browsing by Author "Yang, Zhugen"
Now showing 1 - 20 of 70
Results Per Page
Sort Options
Item Open Access Advancing biosensing techniques for detection of antimicrobial resistance genes and antibiotics in water(Cranfield University, 2024-09) Li, Wenliang; Yang, Zhugen; Coulon, FredericAntimicrobial resistance (AMR) poses a significant global public health threat requiring urgent attention for surveillance of antibiotic resistance genes (ARGs) and antibiotics in the environment. In this PhD study, a real-time fluorescent detection assay of antimicrobial resistance genes (ARGs) was developed to specifically target two key ARGs, tet(M) and tet(x3) to detect tetracycline and tigecycline resistance respectively in water samples. Additionally, crassphage gene was investigated for anthropogenic activities since they also play a vital role in the AMR transmission. The advanced ARG detection assay was based on multiplexing recombinase polymerase amplification (RPA) and subsequent sequence-specific recognition by the trans-cleavage activity of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas12a. The assay achieved limits of detection (LODs) of 1 copy µL⁻¹ for all three gene targets with an accuracy of 100% in spiked tap and surface water samples. Expanding the assay by including two additional end-point detection modalities, lateral flow assay (LFA) and voltametric detection, further demonstrate its versatility. LODs of 1 copy µL⁻¹ for tet(x3) and crassphage, and 10 copies µL⁻¹ for tet(M) (LFA) and 10 copies µL⁻¹ for all three targets (electrochemical) were reached. Validation against gold standard quantitative polymerase chain reaction (qPCR) using real water samples, including wastewater and drinking water samples, revealed a remarkable 100% accuracy rate. Antibiotics detection assay was conceptualised based on the amplification of hybridisation chain reaction (HCR) followed by CRISPR/Cas mediated cleavage within a DNA hydrogel matrix. This approach aimed to release electroactive methylene blue (MB) particles, detectable and quantifiable by square wave voltammetry (SWV). While unforeseen circumstances impeded full assay development, the preliminary data illustrated the viability of the proposed method, suggesting avenues for further research to develop rapid and onsite antibiotics detection methods.Item Open Access An organic-inorganic polyacrylamide-based surface imprinted quantum dots for the impedimetric and voltammetric detection of diazepam in saliva with smartphone readout(Elsevier, 2025-04-01) Adegoke, Oluwasesan; Oyinlola, Kayode; Adeniyi, Kayode Omotayo; Achadu, Ojodomo J; Yang, Zhugen; Daeid, Niamh NicDiazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO2-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein. Specifically, electrochemical characterization of the QDs/SPCE using cyclic voltammetry (CV) revealed that the QDs exhibit a higher electrode surface area whilst electrochemical impedance spectroscopy (EIS) characterization demonstrated a lower charge transfer resistance (Rct). To fabricate the electrochemical nanosensor, firstly, alloyed AuZnCeSeS QDs were synthesized in the organic phase and thereafter capped with 3-mercaptopropionic acid (MPA) via a ligand exchange reaction. The MPA-AuZnCeSeS QDs were encapsulated in a SiO2 layer to form a SiO2-MPA AuZnCeSeS QDs system. The QDs were drop-casted onto SPCEs to form a SiO2-MPA AuZnCeSeS QDs/SPCE transducer interface. Organic based acrylamide, used as a functional monomer, was electropolymerized via CV on the QDs/SPCE in the presence of the diazepam template with ethylene glycol dimethacrylate as a crosslinker and 2,2′-azobis(2-methylpropionitrile) as an initiator. Under optimum experimental conditions, DZP was detected using EIS and square wave voltammetry (SWV). Using a portable potentiostat and a hand-held smartphone-based potentiostat, DZP was quantitatively detected in saliva using the MIP@QDs/SPCE with a limit of detection (LOD) of 2.3 μM and 2.7 μM, respectively. The LOD for DZP from SWV analysis was 1.0 μM.Item Open Access Association of adverse fetal outcomes with placental inflammation after oral gestational exposure to hexafluoropropylene oxide dimer acid (GenX) in Sprague-Dawley rats(Elsevier, 2023-09-16) Lv, Di; Liu, Hongyun; An, Qi; Lei, Chengwei; Wang, Yanxuan; Sun, Jin; Li, Chuanhai; Lin, Yongfeng; Dong, Qing; Yang, Zhugen; Che, Kui; Liu, Wendong; Han, WenchaoHexafluoropropylene oxide dimer acid (HFPO-DA), known as “GenX” for its trade name, is gradually taking the place of Perfluorooctanoic acid (PFOA). However, there is a poor understanding of the developmental effects of GenX. This study aims to explore whether GenX produces adverse effects on offspring development in Sprague-Dawley (SD) rats and the underlying mechanisms. Pregnant rats were orally administered with GenX (0, 1, 10 and 100 mg/kg/day) from gestational 0.5–19.5 days. Experimental data showed that the exposure to GenX resulted in increased rats’ gestational weight gain, whereas both body weight and body length of their fetuses born naturally were significantly reduced. This could contribute to the developmental delays of fetal body weight, body length and tail length from postnatal 1–21 days. Histopathological evaluation of placenta indicated that GenX exposure led to neutrophil infiltration in decidual zone and congestion in labyrinth zone. Moreover, placental proteomics showed changes at the expression levels of the inflammation-related proteins in the Rap1 signaling pathway. In conclusion, gestational exposure to GenX induced fetal intrauterine and extrauterine development retardation in SD rats. Placental inflammation may play a key role in this process through the Rap1 signaling pathway.Item Open Access AuAg nanocages/graphdiyne for rapid elimination and detection of trace pathogenic bacteria(Elsevier, 2022-01-10) Bai, Qiang; Luo, Hongyang; Shi, Shugao; Liu, Shen; Wang, Lina; Du, Fanglin; Yang, Zhugen; Zhu, Zhiling; Sui, NingWe prepared a biocompatible AuAg nanocages/graphdiyne @ polyethylene glycol (AuAg/GDY@PEG) composite. The combination of AuAg and GDY to obtain a synergistically enhanced photothermal effect, and the antibacterial effect of GDY and AuAg are used in combined anti-infective therapy. The in vitro antibacterial activity of AuAg/GDY@PEG was investigated, showing an impressive broad-spectrum antibacterial activity with the killing rate > 99.999%. Based on the photothermal conversion ability of AuAg/GDY@PEG, a simple photothermal immunoassay for pathogenic bacteria was successfully established. Sandwich immune response was performed on a microporous plate, the microplate containing the antibody binds specifically to the bacterium being tested, which then binds to the material with the antibody on its surface, and the signal was a change in temperature under 808 nm near-infrared light. The limit of detection (LOD) for S. typhimurium detection is 103 CFU mL−1, with a range of 103–107 CFU mL−1. This method is accurate, rapid and low-cost, which can be used for on-site detection of pathogenic bacteria in food.Item Open Access Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan mercury mine(American Chemical Society , 2020-02-26) Chang, Chuanyu; Chen, Chongying; Yin, Runsheng; Shen, Yuan; Mao, Kang; Yang, Zhugen; Feng, Xinbin; Zhang, HuaMercury (Hg) bioaccumulation in rice poses a health issue for rice consumers. In rice paddies, selenium (Se) can decrease the bioavailability of Hg through forming the less bioavailable Hg selenides (HgSe) in soil. Rice leaves can directly uptake a substantial amount of elemental Hg from the atmosphere, however, whether the bioaccumulation of Hg in rice leaves can affect the bioaccumulation of Se in rice plants is not known. Here, we conducted field and controlled studies to investigate the bioaccumulation of Hg and Se in the rice-soil system. In the field study, we observed a significantly positive correlation between Hg concentrations and BAFs of Se in rice leaves (r2 = 0.60, p < 0.01) collected from the Wanshan Mercury Mine, SW China, suggesting that the bioaccumulation of atmospheric Hg in rice leaves can facilitate the uptake of soil Se, perhaps through the formation of Hg-Se complex in rice leaves. This conclusion was supported by the controlled study, which observed significantly higher concentrations and BAFs of Se in rice leaf at a high atmospheric Hg site at WMM, compared to a low atmospheric Hg site in Guiyang, SW China.Item Open Access Biosensors and new analytical methods for wastewater-based epidemiology(Elsevier, 2023-03-21) Yang, Zhugen; Barceló, DamiàItem Open Access Biosensors for rapid detection of bacterial pathogens in water, food and environment(Elsevier, 2022-06-28) Nnachi, Raphael Chukwuka; Sui, Ning; Ke, Bowen; Luo, Zhenhua; Bhalla, Nikhil; He, Daping; Yang, ZhugenConventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.Item Open Access Biosensors for wastewater-based epidemiology for monitoring public health(Elsevier, 2020-12-25) Mao, Kang; Zhang, Hua; Pan, Yuwei; Yang, ZhugenPublic health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.Item Open Access Blue-emitting SiO2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein(Elsevier, 2023-10-20) Adegoke, Oluwasesan; Oyinlola, Kayode; Achadu, Ojodomo J; Yang, ZhugenThe outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was first reported in early January 2020, continues to devastate the worlds public health system. Herein, we report on the development of a novel metal-enhanced fluorescence (MEF) and electrochemical biosensor for SARS-CoV-2 spike (S) protein. To develop the MEF biosensor, SiO2-coated Si-doped ZnSeS quantum dots (QDs) were newly synthesized and conjugated to an aptamer-molecular beacon (Apta-MB) probe. Thereafter, cationic AuNPs, used as a localised surface plasmon resonance (LSPR) signal amplifier, were self-assembled on the QDs-Apta-MB conjugate to form a QDs-Apta-MB-AuNP probe. To develop the electrochemical biosensor, the QDs-Apta-MB assay was carried out on a carbon nanofiber-modified screen-printed carbon electrode. Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrode surface whilst spectrophotometric, spectroscopic, fluorescence polarization and electron microscopic techniques were used to characterize the materials. Under optimal experimental conditions, the QDs binding to the Apta-MB, quenched the QDs’ fluorescence and with SARS-CoV-2 S protein binding to the Apta-MB, LSPR signal from cationic AuNPs of different sizes and shapes were used to tune the fluorescence signal to obtain enhanced sensitivity. On the other hand, using [Fe(CN)6]/K3−/4- buffered with NaAc-KAc-TrizmaAc-KSCN-Borax as the electrolyte solution, anodic peaks of the QDs from the CV and DPV plots were unravelled. Electrochemical detection of SARS-CoV-2 S protein was accomplished by a systematic increase in the QDs anodic peak current generated from the DPV plots. The limits of detection obtained for the SARS-CoV-2 S protein were 8.9 fg/mL for the QDs-Apta-MB-AuNP MEF probe and ∼0.5 pg/mL for the QDs-Apta-MB electrochemical probe. Detection of SARS-CoV-2 S protein in saliva was demonstrated using the QDs-Apta-MB-AuNP MEF probe.Item Open Access Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology?(American Chemical Society , 2020-03-23) Mao, Kang; Zhang, Hua; Yang, ZhugenA recent outbreak of novel coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection has spread rapidly around the globe, with cases now confirmed in 130 countries worldwide. Although public health authorities are racing to contain the spread of COVID-19 around the world, the situation is still grim. About 158 111 confirmed cases and 5946 cumulative deaths (81 059 confirmed cases and 3204 cumulative deaths from China) have been reported around the globe as of March 15, 2020. Some clinical cases have found that some carriers of the virus may be asymptomatic, with no fever, and no, or only slight symptoms of infection. Without the ability to screen these asymptomatic patients quickly and effectively, these unsuspecting carriers have the potential to increase the risk of disease transmission if no early effective quarantine measures are implemented. Therefore, to trace unknown COVID-19 sources, fast and accurate screening of potential virus carriers and diagnosis of asymptomatic patients is a crucial step for intervention and prevention at the early stage.Item Open Access Can wastewater monitoring protect public health in schools?(Elsevier, 2023-03-16) Hassard, Francis; Singh, Suniti; Coulon, Frederic; Yang, ZhugenItem Open Access Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries(Elsevier, 2020-04-21) Ali, Waqar; Mao, Kang; Zhang, Hua; Junaid, Muhammad; Xu, Nan; Rasool, Atta; Feng, Xinbin; Yang, ZhugenRice is the leading staple food for more than half of the world’s population, and approximately 160 million hectares of agricultural area worldwide are under rice cultivation. Therefore, it is essential to fulfil the global demand for rice while maintaining food safety. Rice acts as a sink for potentially toxic metals such as arsenic (As), selenium (Se), cadmium (Cd), lead (Pb), zinc (Zn), manganese (Mn), nickel (Ni), and chromium (Cr) in paddy soil-rice systems due to the natural and anthropogenic sources of these metals that have developed in the last few decades. This review summarizes the sources and basic chemical behaviours of these trace elements in the soil system and their contamination status, uptake, translocation, and accumulation mechanisms in paddy soil-rice systems in major rice-growing countries. Several human health threats are significantly associated with these toxic and potentially toxic metals not only due to their presence in the environment (i.e., the soil, water, and air) but also due to the uptake and translocation of these metals via different transporters. Elevated concentrations of these metals are toxic to plants, animals, and even humans that consume them regularly, and the uniform deposition of metals causes a severe risk of bioaccumulation. Furthermore, the contamination of rice in the global rice trade makes this a critical problem of worldwide concern. Therefore, the global consumption of contaminated rice causes severe human health effects that require rapid action. Finally, this review also summarizes the available management/remediation measures and future research directions for addressing this critical issue.Item Open Access Customizable fabrication for auxetic graphene assembled macrofilms with high conductivity and flexibility(Elsevier, 2020-02-25) Li, Peng; Wang, Zhe; Song, Rongguo; Qian, Wei; Wen, Pin; Yang, Zhugen; He, DapingAuxetic materials with negative Poisson's ratios unusually exhibit intuitive mechanical behaviors, such as cross-section expansion instead of contraction during tension. Such behaviors are interesting because they may enhance unusual mechanical properties. However, controllable preparation of materials with negative Poisson's ratio is still a major challenge. In this study, we report the synthesis of a flexible auxetic graphene assembled macrofilm (GAMF) from graphene oxide nanosheets by a thermal annealing and press assistant method. The obtained materials exhibit good flexibility and significantly wide tunable negative Poisson's ratios ranging from −0.11 to −0.53. We also develop a reconstruction model for characterization the uniaxial tension of GAMF based on X-ray tomographic images. The tensile simulation result predicts the function relationship between Poisson's ratio and critical thickness of pore channels, which is in good agreement with the experimental data. As a result, an effective tunable way is proposed for customizable fabrication of GAMF with tunable negative Poisson's ratios, and the GAMF materials with good flexibility, high electrical conductivity and superior auxetic behavior looks promising for future development of wearable electronics.Item Open Access Data for Water Research 2020(Cranfield University, 2020-11-03 09:39) Yang, ZhugenThis sets were associated with the data produced for the article recently published in Water Research. This paper reports a paper-based nanosensors for the evaluation of illicit drugs use trends in the community level with wastewater-based epidemiology.Item Open Access Discussion: Embracing microfluidics to advance environmental science and technology(Elsevier, 2024-05-29) Dou, Jibo; Yang, Zhugen; Singh, Baljit; Ma, Bin; Lu, Zhijiang; He, YanMicrofluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.Item Open Access Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology(Elsevier, 2021-05-18) Ou, Yangteng; Cao, Shixiang; Zhang, Jing; Zhang, Jing; Dong, Weiliang; Yang, Zhugen; Yu, ZiyiInfectious diseases caused by pathogenic microbes have posed a major health issue for the public, such as the ongoing COVID-19 global pandemic. In recent years, wastewater-based epidemiology (WBE) is emerging as an effective and unbiased method for monitoring public health. Despite its increasing importance, the advancement of WBE requires more competent and streamlined analytical platforms. Herein we discuss the interactions between WBE and droplet microfluidics and focus on the analysis of pathogens in droplets, which is hard to be tackled by traditional analytical routines. We highlight research works from three aspects, namely, quantitation of pathogen biomarkers in droplets, single-cell analysis in droplets, and living cell biosensors in droplets, with the aim of providing future perspectives on the synergy between WBE and droplet microfluidicsItem Open Access Dual model sensors for viral RNA and protein detection for SARS- CoV-2 in saliva(Cranfield University, 2023-10) Ma Xuanye; Yang, Zhugen; Chiarelli, IvaThe coronavirus disease 2019 (Covid-19) pandemic emerged as an infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) over the past 3 years, causing enormous threats to humans and economic loss. It was reported that currently, nearly 68% of the population shows a degree of immunity to the disease. Though vaccine has played a critical role to protect the population, people are at risk of second or third infections with fading antibody titers against the virus. The detection of the viral load was crucial for monitoring the spread of this disease, and the detection of the antibody concentration to the virus was significant as well to understand the neutralization activity and vaccine response. This thesis reports the development of a rapid paper-based platform, which provides nucleic acid detection and immunoassay to test both active infections and body immunity. The project focused on a non-invasive sample, human saliva, as an alternative to nasopharyngeal swabs for diagnosis. The nucleic acid test, employing reverse transcription loop-mediated isothermal mediated amplification (RT-LAMP), was further integrated into a novel paper microfluidic platform, where the result could be reported within 30 mins. Under the optimized conditions, RT- LAMP assay correctly detects above 135 copies µL⁻¹ of synthetic SARS-CoV-2 sequence. Moreover, a paper-based immunoassay was devised and constructed, following meticulous refinement of detection parameters and comparative analysis against a conventional 96-well plate assay for the identification of immunoglobulin G (IgG) targeting the SARS-CoV-2 spike protein. For the paper- based immunoassay, the dynamic range of the IgG was 0.5 μg mL⁻¹ to 50 μg mL⁻¹ , which was sensitive enough compared to clinical values. It should be noted that only commercially available artificial saliva was utilized to test the analytical performance of the developed assay. In conclusion, these results demonstrated a rapid and easy-to-use paper microfluidics platform with the potential to be further implemented as a comprehensive detection tool for monitoring both pathogenetic infection and immune levels.Item Open Access Dual-emission single sensing element-assembled fluorescent sensor arrays for the rapid discrimination of multiple surfactants in environments(American Chemical Society, 2024-03-11) Wei, Dali; Zhang, Hu; Tao, Yu; Wang, Kaixuan; Wang, Ying; Deng, Chunmeng; Xu, Rongfei; Zhu, Nuanfei; Lu, Yanyan; Zeng, Kun; Yang, Zhugen; Zhang, ZhenSurfactants are considered as typical emerging pollutants, their extensive use of in disinfectants has hugely threatened the ecosystem and human health, particularly during the pandemic of coronavirus disease-19 (COVID-19), whereas the rapid discrimination of multiple surfactants in environments is still a great challenge. Herein, we designed a fluorescent sensor array based on luminescent metal–organic frameworks (UiO-66-NH2@Au NCs) for the specific discrimination of six surfactants (AOS, SDS, SDSO, MES, SDBS, and Tween-20). Wherein, UiO-66-NH2@Au NCs were fabricated by integrating UiO-66-NH2 (2-aminoterephthalic acid-anchored-MOFs based on zirconium ions) with gold nanoclusters (Au NCs), which exhibited a dual-emission features, showing good luminescence. Interestingly, due to the interactions of surfactants and UiO-66-NH2@Au NCs, the surfactants can differentially regulate the fluorescence property of UiO-66-NH2@Au NCs, producing diverse fluorescent “fingerprints”, which were further identified by pattern recognition methods. The proposed fluorescence sensor array achieved 100% accuracy in identifying various surfactants and multicomponent mixtures, with the detection limit in the range of 0.0032 to 0.0315 mM for six pollutants, which was successfully employed in the discrimination of surfactants in real environmental waters. More importantly, our findings provided a new avenue in rapid detection of surfactants, rendering a promising technique for environmental monitoring against trace multicontaminants.Item Open Access Editorial: FEAST of biosensors: food, environmental, and agricultural sensing techniques(Frontiers Media SA, 2024-09-10) Mao, Kang; Zhang, Hua; Yang, ZhugenBiosensors are analytical devices that involve biological elements, such as nucleic acids, antibodies, enzymes, cells and microorganisms with a physicochemical (such as optical, electrical and mechanical) detectors. In the last 5 years the number of publications with the keyword “biosensor” is over 5,000 per year from the Web of Science and various biosensors are being designed and fabricated for high-efficiency, multiplex-functionality and high-flexibility sensing applications in the field of food, environment and agriculture. Many existing biosensors have the inherent capacity to achieve such goals; however, they require further development into and make it more easy-to-use and reduce cost without compromising the analytical performance such as sensitivity and specificity, as well as at a greater scale than heretofore possible.Item Open Access Editorial: Micro/nano devices and technologies for neural science and medical applications(Frontiers, 2025-01-06) Liu, Juntao; Yang, Zhugen; Wang, Yang; Wang, Li; Li, ZiyueResearch on micro/nano devices and technologies represents a significant Frontier at the intersection of information science and life sciences, holding substantial strategic importance and promising application prospects in the fields of neural science and medical applications (Liu et al., 2020). With the rapid advancement of micro/nano processing technology, innovative intelligent, miniaturized, and integrated devices are emerging. These devices offer distinct advantages in detection and regulation. Notably, integrating micro/nano devices with neural science and clinical medicine can address scientific frontiers while fostering new research hotspots.