CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zaporowska, Anna"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A clustering approach to detect faults with multi-component degradations in aircraft fuel systems
    (Elsevier, 2020-12-18) Zaporowska, Anna; Liu, Haochen; Skaf, Zakwan; Zhao, Yifan
    Accurate fault diagnosis and prognosis can significantly increase the safety and reliability of engineering systems and also reduce the maintenance costs. There is very limited relative research reported on the fault diagnosis of a complex system with multi-component degradation. The Complex Systems (CS) problem, which features multiple components simultaneously and nonlinearly interacting with each other and corresponding environment on multiple levels, has become an essential challenge in system engineering. In CS, even a single component degradation could cause misidentification of the fault severity level and lead to serious consequences. This paper introduces a new test rig to simulate multi-component degradations of the aircraft fuel system. A data analysis approach based on machine learning classification of both the time and frequency domain features is then proposed to detect and identify the fault severity level of CS with multi-component degradation. Results show that a) the fault can be sensitively detected with an accuracy > 99%; b) the severity of fault can be identified with an accuracy of 100%.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A machine learning-based clustering approach to diagnose multi-component degradation of aircraft fuel systems
    (Springer, 2021-10-07) Liu, Haochen; Zhao, Yifan; Zaporowska, Anna; Skaf, Zakwan
    Accurate fault diagnosis and prognosis can significantly reduce maintenance costs, increase the safety and availability of engineering systems that have become increasingly complex. It has been observed that very limited researches have been reported on fault diagnosis where multi-component degradation are presented. This is essentially a challenging Complex Systems problem where features multiple components interacting simultaneously and nonlinearly with each other and its environment on multiple levels. Even the degradation of a single component can lead to a misidentification of the fault severity level. This paper introduces a new test rig to simulate the multi-component degradation of the aircraft fuel system. A machine learning-based data analytical approach based on the classification of clustering features from both time and frequency domains is proposed. The scope of this framework is the identification of the location and severity of not only the system fault but also the multi-component degradation. The results illustrate that (a) the fault can be detected with accuracy > 99%; (b) the severity of fault can be identified with an accuracy of almost 100%; (c) the degradation level can be successfully identified with the R-square value > 0.9.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback