Browsing by Author "Zhang, Junzhi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Cyber-physical system based optimization framework for intelligent powertrain control(Society of Automotive Engineers, 2017-03-28) Lv, Chen; Wang, Hong; Zhao, Bolin; Cao, Dongpu; Huaji, Wang; Zhang, Junzhi; Li, Yutong; Yuan, YeThe interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented. Simulation-based parameter optimizations are carried out according to the objective functions. Simulation results show that an electric powertrain with intelligent controller can perform its tasks well under sport, eco, and normal driving modes. The vehicle further improves overall performance in vehicle dynamics, ride comfort, and energy efficiency. The results validate the feasibility and effectiveness of the proposed CPS-based optimization framework, and demonstrate its advantages over a baseline benchmark.Item Open Access Levenberg-Marquardt backpropagation training of multilayer neural networks for state estimation of a safety critical cyber-physical system(IEEE, 2017-11-24) Lv, Chen; Xing, Yang; Zhang, Junzhi; Na, Xiaoxiang; Li, Yutong; Liu, Teng; Cao, Dongpu; Wang, Fei-YueAs an important safety critical cyber-physical system (CPS), the braking system is essential to the safe operation of the electric vehicle. Accurate estimation of the brake pressure is of great importance for automotive CPS design and control. In this paper, a novel probabilistic estimation method of brake pressure is developed for electrified vehicles based on multilayer Artificial Neural Networks (ANN) with Levenberg-Marquardt Backpropagation (LMBP) training algorithm. Firstly, the high-level architecture of the proposed multilayer ANN for brake pressure estimation is illustrated. Then, the standard backpropagation (BP) algorithm used for training of the feed-forward neural network (FFNN) is introduced. Based on the basic concept of backpropagation, a more efficient training algorithm of LMBP method is proposed. Next, real vehicle testing is carried out on a chassis dynamometer under standard driving cycles. Experimental data of the vehicle and the powertrain systems are collected, and feature vectors for FFNN training collection are selected. Finally, the developed multilayer ANN is trained using the measured vehicle data, and the performance of the brake pressure estimation is evaluated and compared with other available learning methods. Experimental results validate the feasibility and accuracy of the proposed ANN-based method for braking pressure estimation under real deceleration scenarios.