Browsing by Author "Zhang, Yang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Constructed wetlands as nature-based solutions for the removal of antibiotics: performance, microbial response, and emergence of antimicrobial resistance (AMR)(MDPI, 2022-11-13) Bai, Shaoyuan; Wang, Xin; Zhang, Yang; Liu, Fang; Shi, Lulu; Ding, Yanli; Wang, Mei; Lyu, TaoAntibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants and pose significant threats to the aquatic environment and to human health. This study aimed to investigate the removal of nutrients, antibiotics, and the emergency of ARGs in domestic sewage by means of constructed wetlands (CWs) filled with an electroconductive media, i.e., coke. In this study, the antibiotics removal efficiencies ranged from 13% to 100%, which were significantly higher in the system filled with coke compared with the CWs filled with common quartz sand (7%~100%). Moreover, the presence of wetland plants could also significantly improve the removal of nutrients and tetracyclines. The results also demonstrated the importance of substrate selection and wetland plants in CWs on the alternation of microbial communities and structures, where the electroconductive media showed a promising effect on increasing the removal of antibiotics in CWs. In terms of the emergency of ARGs, the CWs filled with coke retained the most ARGs (10,690 copies/g) compare with the control groups (8576–7934 copies/g) in the substrate. As the accumulated ARGs could be released back to the watercourse due to the environmental/operation condition changes, the application of such an advanced substrate in CWs may pose a more significant potential threat to the environment. With these results, this study provided new insight into selection of the substrates and plants for wastewater treatment to achieve a sustainable and secure water future.Item Open Access Exploring a chemical input free advanced oxidation process based on nanobubble technology to treat organic micropollutants(Elsevier, 2023-11-04) Wang, Bangguo; Wang, Lijing; Cen, Wenxi; Lyu, Tao; Jarvis, Peter; Zhang, Yang; Zhang, Yuanxun; Han, Yinghui; Wang, Lei; Pan, Gang; Zhang, Kaili; Fan, WeiAdvanced oxidation processes (AOPs) are increasingly applied in water and wastewater treatment, but their energy consumption and chemical use may hinder their further implementation in a changing world. This study investigated the feasibility and mechanisms involved in a chemical-free nanobubble-based AOP for treating organic micropollutants in both synthetic and real water matrices. The removal efficiency of the model micropollutant Rhodamine B (RhB) by oxygen nanobubble AOP (98%) was significantly higher than for air (73%) and nitrogen nanobubbles (69%). The treatment performance was not significantly affected by pH (3–10) and the presence of ions (Ca2+, Mg2+, HCO3−, and Cl−). Although a higher initial concentration of RhB (10 mg/L) led to a slower treatment process when compared to lower initial concentrations (0.1 and 1 mg/L), the final removal performance reached a similar level (∼98%) between 100 and 500 min. The coexistence of organic matter (humic acid, HA) resulted in a much lower reduction (70%) in the RhB removal rate. Both qualitative and quantitative analysis of reactive oxygen species (ROSs) using fluorescent probe, electron spin resonance, and quenching experiments demonstrated that the contributions of ROSs in RhB degradation followed the order: hydroxyl radical (•OH) > superoxide radical (•O2−) > singlet oxygen (1O2). The cascade degradation reactions for RhB were identified which involve N-de-ethylation, hydroxylation, chromophore cleavage, opening-ring and final mineralisation processes. Moreover, the treatment of real water samples spiked with RhB, including natural lake water and secondary effluent from a sewage works, still showed considerable removals of the dye (75.3%–90.8%), supporting its practical feasibility. Overall, the results benefit future research and application of chemical free nanobubble-based AOP for water and wastewater treatment.Item Open Access Nanobubble aeration enhanced wastewater treatment and bioenergy generation in constructed wetlands coupled with microbial fuel cells(Elsevier, 2023-06-29) Lyu, Tao; Wu, Yuncheng; Zhang, Yang; Fan, Wei; Wu, Shubiao; Mortimer, Robert J. G.; Pan, GangArtificial aeration is a widely used approach in wastewater treatment to enhance the removal of pollutants, however, traditional aeration techniques have been challenging due to the low oxygen transfer rate (OTR). Nanobubble aeration has emerged as a promising technology that utilise nano-scale bubbles to achieve higher OTRs owing to their large surface area and unique properties such as longevity and reactive oxygen species generation. This study, for the first time, investigated the feasibility of coupling nanobubble technology with constructed wetlands (CWs) for treating livestock wastewater. The results demonstrated that nanobubble-aerated CWs achieved significantly higher removal efficiencies of total organic carbon (TOC) and ammonia (NH4+-N), at 49 % and 65 %, respectively, compared to traditional aeration treatment (36 % and 48 %) and the control group (27 % and 22 %). The enhanced performance of the nanobubble-aerated CWs can be attributed to the nearly three times higher amount of nanobubbles (Ø < 1 μm) generated from the nanobubble pump (3.68 × 108 particles/mL) compared to the normal aeration pump. Moreover, the microbial fuel cells (MFCs) embedded in the nanobubble-aerated CWs harvested 5.5 times higher electricity energy (29 mW/m2) compared to the other groups. The results suggested that nanobubble technology has the potential to trigger the innovation of CWs by enhancing their capacity for water treatment and energy recovery. Further research needs are proposed to optimise the generation of nanobubbles, allowing them to be effectively coupled with different technologies for engineering implementation.Item Open Access Nanobubble technology enhanced ozonation process for ammonia removal(MDPI, 2022-06-10) Wu, Yuncheng; Tian, Wei; Zhang, Yang; Fan, Wei; Liu, Fang; Zhao, Jiayin; Wang, Mengmeng; Liu, Yu; Lyu, TaoOzone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water.