Browsing by Author "Zhu, Yong-Guan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access China's soil and groundwater management challenges: Lessons from the UK's experience and opportunities for China(Elseveir, 2016-03-10) Coulon, Frederic; Jones, Kevin; Li, Hong; Hu, Qing; Gao, Jingyang; Li, Fasheng; Chen, Mengfang; Zhu, Yong-Guan; Liu, Rongxia; Liu, Ming; Canning, Kate; Harries, Nicola; Bardos, Paul; Nathanail, C. Paul; Sweeney, Rob; Middleton, David; Charnley, Maggie; Randall, Jeremy; Richell, Martin; Howard, Trevor; Martin, Ian; Spooner, Simon; Weeks, Jason; Cave, Mark; Yu, Fang; Zhang, Fang; Jiang, Ying; Longhurst, Philip J.; Prpich, George; Bewley, Richard; Abra, Jonathan; Pollard, Simon J. T.There are a number of specific opportunities for UK and China to work together on contaminated land management issues as China lacks comprehensive and systematic planning for sustainable risk based land management, encompassing both contaminated soil and groundwater and recycling and reuse of soil. It also lacks comprehensive risk assessment systems, structures to support risk management decision making, processes for verification of remediation outcome, systems for record keeping and preservation and integration of contamination issues into land use planning, along with procedures for ensuring effective health and safety considerations during remediation projects, and effective evaluation of costs versus benefits and overall sustainability. A consequence of the absence of these overarching frameworks has been that remediation takes place on an ad hoc basis. At a specific site management level, China lacks capabilities in site investigation and consequent risk assessment systems, in particular related to conceptual modelling and risk evaluation. There is also a lack of shared experience of practical deployment of remediation technologies in China, analogous to the situation before the establishment of the independent, non-profit organisation CL:AIRE (Contaminated Land: Applications In Real Environments) in 1999 in the UK. Many local technology developments are at lab-scale or pilot-scale stage without being widely put into use. Therefore, a shared endeavour is needed to promote the development of technically and scientifically sound land management as well as soil and human health protection to improve the sustainability of the rapid urbanisation in China.Item Open Access Paper-based devices as a new tool for rapid and on-site monitoring of "superbugs"(American Chemical Society, 2021-08-31) Li, Wenliang; Coulon, Frederic; Singer, Andrew; Zhu, Yong-Guan; Yang, ZhugenInfectious diseases are currently a significant cause of morbidity and mortality, with approximately 700 000 deaths each year worldwide.(1) Viruses, bacteria, and fungi have become increasingly resistant to antimicrobial agents, making antimicrobial resistance (AMR) one of the biggest global health challenges humanity has had to face. Recent reports have highlighted the role pandemics may play in exacerbating AMR through the increased use of disinfectants, alcohol-based hand sanitizers, and antiseptic hand wash.(2) Evidence of antibiotic mis-prescribing in hospitalised COVID-19 patients has also been reported, asking a pandemic-induced spike in AMR. Ultimately, the fate of antimicrobial agents and resulting resistant microorganisms is they are discarded into wastewater, entering the environment as sewage, sludge, and treated wastewater. This results in opportunities for further mutation and horizontal gene transfer (HGT).Item Open Access Promoting Sino-UK Collaboration on Developing Low Carbon and Sustainable Methodologies for Brownfields and Marginal Land Re-use in China(2017-01) Coulon, Frederic; Campo Moreno, Pablo; Jiang, Ying; Longhurst, Phil; Bardos, Paul; Li, Xiaonuo; Harries, Nicola; Jones, Kevin; Li, Hong; Li, Fasheng; Cao, Yunzhe; Hu, Qing; Gao, Jingyang; Chen, Mengfang; Zhu, Yong-Guan; Cai, ChaoRapid urbanisation and changes in land use resulting from industrial change has left a legacy of vast polluted industrial and commercial areas (also called brownfields) and marginal land areas. Recent evidence from the UK, EU and USA indicate that these land areas may have considerable potential for renewables production, for example from solar, wind or biomass. In parallel there are opportunities for carbon storage in rehabilitated soil, as well as substitution by the production of renewables. The UK is also leading the understanding in the wider parallel benefits that can be achieved from ecosystem services and public health benefits from improved provision of green space. These multiple services can be provided together, in synergy, from soft re-uses of post-industrial sites, and in this way the post-industrial regeneration areas in China should be seen as a major opportunity for new enterprise, society and the wider environment. The improving bankability of renewable energy projects, and the possibility of creating a voluntary carbon offset business, means that revenue streams may be sufficient to pay for ongoing land management over time as a profit generating activity. In terms of fastest benefit to UK PLC and China, the likelihood is that combination of renewable energies with “dual use” for habitat will provide both more readily commercial brownfield re-use opportunities for cities in China in the short term, and also create better carbon management opportunities, as well as a variety of wider sustainability benefits. Thus this type of re-uses will create a platform for rapid commercial exchange and development between Chinese and UK companies. Considering that China is preparing an action plan for managing soil pollution and remediation across the country estimated to be RMB 7tn which is equivalent to one-third of the national exchange reserves, this report on developing low carbon and sustainable methodologies for brownfields and marginal land re-use in China provides timely information that will support the decision making for sustainable remediation opportunities in China. The report is intended to serve as a tool and resource guide to stakeholders involved in land remediation willing to engage in sustainable remediation implementation for renewable energy and carbon management applications. It is intended to inform remediation stakeholders unfamiliar with sustainable remediation about the concept, practices, and available resources. The report capitalises on UK leadership positions on the sustainable rehabilitation of brownfields land (SURF-UK), the soft re-use of brownfields (e.g. for energy or amenity rather than buildings); effective end-use directed risk management for contaminated land, and sustainable remediation.Item Open Access Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain(BioMed Central, 2018-02-05) Shi, Yu; Li, Yuntao; Xiang, Xingjia; Sun, Ruibo; Yang, Teng; He, Dan; Zhang, Kaoping; Ni, Yingying; Zhu, Yong-Guan; Adams, Jonathan M.; Chu, HaiyanThe relative importance of stochasticity versus determinism in soil bacterial communities is unclear, as are the possible influences that alter the balance between these. Here, we investigated the influence of spatial scale on the relative role of stochasticity and determinism in agricultural monocultures consisting only of wheat, thereby minimizing the influence of differences in plant species cover and in cultivation/disturbance regime, extending across a wide range of soils and climates of the North China Plain (NCP). We sampled 243 sites across 1092 km and sequenced the 16S rRNA bacterial gene using MiSeq. We hypothesized that determinism would play a relatively stronger role at the broadest scales, due to the strong influence of climate and soil differences in selecting many distinct OTUs of bacteria adapted to the different environments. In order to test the more general applicability of the hypothesis, we also compared with a natural ecosystem on the Tibetan Plateau. Our results revealed that the relative importance of stochasticity vs. determinism did vary with spatial scale, in the direction predicted. On the North China Plain, stochasticity played a dominant role from 150 to 900 km (separation between pairs of sites) and determinism dominated at more than 900 km (broad scale). On the Tibetan Plateau, determinism played a dominant role from 130 to 1200 km and stochasticity dominated at less than 130 km. Among the identifiable deterministic factors, soil pH showed the strongest influence on soil bacterial community structure and diversity across the North China Plain. Together, 23.9% of variation in soil microbial community composition could be explained, with environmental factors accounting for 19.7% and spatial parameters 4.1%. Our findings revealed that (1) stochastic processes are relatively more important on the North China Plain, while deterministic processes are more important on the Tibetan Plateau; (2) soil pH was the major factor in shaping soil bacterial community structure of the North China Plain; and (3) most variation in soil microbial community composition could not be explained with existing environmental and spatial factors. Further studies are needed to dissect the influence of stochastic factors (e.g., mutations or extinctions) on soil microbial community distribution, which might make it easier to predictably manipulate the microbial community to produce better yield and soil sustainability outcomes.Item Open Access Viral metagenome reveals microbial hosts and the associated antibiotic resistome on microplastics(Springer, 2024-06-14) Li, Ruilong; An, Xin-Li; Wang, Yijin; Yang, Zhugen; Su, Jian-Qiang; Cooper, Jonathan; Zhu, Yong-GuanMicroplastics provide a unique niche for viruses, promoting viral interactions with hosts and accelerating the rapid ‘horizontal’ spread of antibiotic resistance genes (ARGs). Currently, however, there is a lack of knowledge concerning the main drivers for viral distribution on microplastics and on the resulting patterns of viral biogeographic distributions and the spread of the associated ARGs. Here we performed metagenomic and virus enrichment-based viromic sequencings on both polyethylene and polypropylene microplastics along a river. Experimental results show that Proteobacteria, Firmicutes, Actinobacteria and Cyanobacteria were the potential hosts of viruses on microplastics, but only approximately 4.1% of viral variations were associated with a bacterial community. Notably, two shared ARGs and six metal resistance genes were identified in both viral and their host bacterial genomes, indicating the occurrence of horizontal gene transfer between viruses and bacteria. Furthermore, microplastics introduce more distinctive elements to viral ecology, fostering viral diversification and virus–host linkage while refraining from an escalated level of horizontal gene transfer of ARGs in contrast to natural matrixes. Our study provides comprehensive profiles of viral communities, virus-related ARGs and their driving factors on microplastics, highlighting how these anthropogenic niches provide unique interfaces that comprise highly defined viral ecological features in the environment.