CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "van Loosdrecht, Mark"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Techno-economic analysis of sidestream ammonia removal technologies: biological options versus thermal stripping
    (Elsevier, 2022-11-22) Ochs, Pascal; Martin, Ben; Germain-Cripps, Eve; Stephenson, Tom; van Loosdrecht, Mark; Soares, Ana
    Over the past twenty years, various commercial technologies have been deployed to remove ammonia (NH4–N) from anaerobic digestion (AD) liquors. In recent years many anaerobic digesters have been upgraded to include a pre-treatment, such as the thermal hydrolysis process (THP), to produce more biogas, increasing NH4–N concentrations in the liquors are costly to treat. This study provides a comparative techno-economic assessment of sidestream technologies to remove NH4–N from conventional AD and THP/AD dewatering liquors: a deammonification continuous stirred tank reactor (PNA), a nitrification/denitrification sequencing batch reactor (SBR) and thermal ammonia stripping process with an ammonia scrubber (STRIP). The SBR and PNA were based on full-scale data, whereas the STRIP was designed using a computational approach to achieve NH4–N removals of 90–95%. The PNA presented the lowest whole-life cost (WLC) over 40 years, with £7.7 M, while the STRIP had a WLC of £43.9 M. This study identified that THP dewatering liquors, and thus a higher ammonia load, can lead to a 1.5–3.0 times increase in operational expenditure with the PNA and the SBR. Furthermore, this study highlighted that deammonification is a capable and cost-effective nitrogen removal technology. Processes like the STRIP respond to current pressures faced by the water industry on ammonia recovery together with targets to reduce nitrous oxide emissions. Nevertheless, ammonia striping-based processes must further be demonstrated in WWTPs and WLC reduced to grant their wide implementation and replace existing technologies.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback