Staff publications (CDS)
Permanent URI for this collection
Browse
Browsing Staff publications (CDS) by Publisher "American Society of Mechanical Engineers"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Characteristics of boundary-layer transition and Reynolds-number sensitivity of three-dimensional wings of varying complexity operating in ground effect(American Society of Mechanical Engineers, 2016-06-03) Roberts, Luke S.; Finnis, Mark V.; Knowles, KevinThe influence of Reynolds number on the aerodynamic characteristics of various wing geometries was investigated through wind-tunnel experimentation. The test models represented racing car front wings of varying complexity: from a simple single-element wing to a highly complex 2009-specification formula-one wing. The aim was to investigate the influence of boundary-layer transition and Reynolds-number dependency of each wing configuration. The single-element wing showed significant Reynolds-number dependency, with up to 320% and 35% difference in downforce and drag, respectively, for a chordwise Reynolds number difference of 0.81 × 105. Across the same test range, the multi-element configuration of the same wing and the F1 wing displayed less than 6% difference in downforce and drag. Surface-flow visualization conducted at various Reynolds numbers and ground clearances showed that the separation bubble that forms on the suction surface of the wing changes in both size and location. As Reynolds number decreased, the bubble moved upstream and increased in size, while reducing ground clearance caused the bubble to move upstream and decrease in size. The fundamental characteristics of boundary layer transition on the front wing of a monoposto racing car have been established.Item Open Access A comparison of trajectory planning and control frameworks for cooperative autonomous driving(American Society of Mechanical Engineers, 2021-01-07) Bezerra Viana, Icaro; Kanchwala, Husain; Ahiska, Kenan; Aouf, NabilThis work considers the cooperative trajectory-planning problem along a double lane change scenario for autonomous driving. In this paper we develop two frameworks to solve this problem based on distributed model predictive control (MPC). The first approach solves a single non-linear MPC problem. The general idea is to introduce a collision cost function in the optimization problem at the planning task to achieve a smooth and bounded collision function and thus to prevent the need to implement tight hard constraints. The second method uses a hierarchical scheme with two main units: a trajectory-planning layer based on mixed-integer quadratic program (MIQP) computes an on-line collision-free trajectory using simplified motion dynamics, and a tracking controller unit to follow the trajectory from the higher level using the non-linear vehicle model. Connected and automated vehicles (CAVs) sharing their planned trajectories lay the foundation of the cooperative behaviour. In the tests and evaluation of the proposed methodologies, MATLAB-CARSIM co-simulation is utilized. CARSIM provides the high fidelity model for the multi-body vehicle dynamics. MATLAB-CARSIM conjoint simulation experiments compare both approaches for a cooperative double lane change maneuver of two vehicles moving along a one-way three-lane road with obstacles.