School of Water, Energy and Environment (SWEE)
Permanent URI for this community
Browse
Browsing School of Water, Energy and Environment (SWEE) by Subject "12 Responsible Consumption and Production"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Biological factors and production challenges drive significant UK fruit and vegetable loss(Wiley, 2024) Gage, Ewan; Terry, Leon A; Falagán, NataliaBACKGROUND Food loss and waste estimates are highly inconsistent as a result of methodological and systemic differences. Additionally, the absence of in‐depth evidence surrounding the biological drivers of food loss and waste precludes targeted mitigation action. To address this challenge, we undertook a metanalysis utilising a systematic literature review combined with industry stakeholder surveys to examine the incidence of food loss and waste in the UK fruit and vegetable supply chain between primary production and retail. RESULTS We estimated that 37% of fruit and vegetables, equivalent to 2.4 Mt of produce, is lost between production and sale. In the UK, primary production is the main stage responsible for these losses (58%), and is dominated by four crops (apple, onion, carrot and potato), which contribute 71% of total food loss and waste. Quality and supply/demand mismatch are the core drivers, combined with limited ability to control postharvest quality decline as a result of technical or economic barriers. CONCLUSIONS Innate biological mechanisms contribute to, and detract from, marketable quality generating food loss risks where these cannot be adequately modified or controlled. Through climate change effects, reduced pesticide availability, changing consumer behaviour and increased pressure to reduce resource/energy inputs during pre‐ and postharvest handling, food loss and waste risk is likely to increase in the short term unless targeted, coordinated action is taken to actively promote its mitigation. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.Item Open Access Comparative life cycle assessment of glycerol valorization routes to 1,2- and 1,3-propanediol based on process modeling(American Chemical Society (ACS), 2024-10-07) Vanapalli, Kumar Raja; Nongdren, Lourembam; Maity, Sunil K; Kumar, VinodCrude glycerol, a high-volume byproduct of the biodiesel industry, has seen a significant surplus due to the industry’s rapid growth. It can be a promising feedstock for a range of high-value products via chemical and biochemical routes. This study thus elucidates the relative environmental performance of two prominent glycerol valorization technologies, i.e., catalytic hydrogenolysis to 1,2-propanediol and microbial fermentation (batch and fed-batch) to 1,3-propanediol, using a cradle-to-gate life cycle assessment (LCA). The LCA was performed using an experimental data-driven comprehensive process model to represent an industrial-scale biorefinery, handling 20 833 kg/h of glycerol. The LCA results identified cooling water (18-35.5%) and steam (15.2-33.7%) consumption in the distillation and glycerol sourcing (33.3-68.1%) as the critical environmental hotspots, which should be focused on while designing the process. The fed-batch fermentation process was environmentally more benign, with significantly lower environmental impacts than hydrogenolysis (by 35.2%) and batch fermentation (by 48.2%). Integrating effective process heat recovery using pinch technology reduced the overall environmental impacts by 4.9-11.2%. The environmental performance of the overall processes varied substantially (2.4-62.1%) with changes in glycerol sourcing and production methods. Therefore, energy and material recycling with sustainable water and glycerol sourcing can improve the sustainability of the overall process.Item Open Access Phosphorus removal in surface flow treatment wetlands for domestic wastewater treatment: Global experiences, opportunities, and challenges(Elsevier BV, 2024-10-01) Lyu, Tao; Headley, Tom; Kadlec, Robert H.; Jefferson, Bruce; Dotro, GabrielaTreatment Wetlands (TWs) are widely used for the treatment of domestic wastewater, with an increasing emphasis on provision of multiple co-benefits. However, concerns remain regarding achieving stringent phosphorus (P) discharge limits, system robustness and resilience, and associated guidance on system design and operation. Typically, where P removal is intended with a passive TW, surface flow (SF) systems are the chosen design type. This study analysed long-term monitoring datasets (2–30 years) from 85 full-scale SF TWs (25 m2 to 487 ha) treating domestic sewage with the influent load ranging from 2.17 to 54,779 m3/d, including secondary treatment, tertiary treatment, and combined sewer overflows treatment. The results showed median percentage removals of total P (TP) and orthophosphate (Ortho P) of 28% and 31%, respectively. Additionally, median areal mass removal rates were 5.13 and 2.87 gP/m2/yr, respectively. For tertiary SF TWs without targeted upstream P removal, 80% of the 44 systems achieved ≤3 mg/L annual average effluent total P. Tertiary SF TWs with targeted upstream P removal demonstrated high robustness, delivering stable effluent TP < 0.35 mg/L. Seasonality in removal achieved was absent from 85% of sites, with 95% of all systems demonstrating stable annual average effluent TP concentrations for up to a 30-year period. Only two out of 32 systems showed a significant increase in effluent TP concentration after the initial year and remained stable thereafter. The impact of different liner types on water infiltration, cost, and carbon footprint were analysed to quantify the impact of these commonly cited barriers to implementation of SF TW for P removal. The use of PVC enclosed between geotextile gave the lowest additional cost and carbon footprint associated with lining SF TWs. Whilst the P-k-C* model is considered the best practice for sizing SF TWs to achieve design pollutant reductions, it should be used with caution with further studies needed to more comprehensively understand the key design parameters and relationships that determine P removal performance in order to reliably predict effluent quality.