PhD, EngD, MPhil and MSc by research theses (CDS)
Permanent URI for this collection
Browse
Browsing PhD, EngD, MPhil and MSc by research theses (CDS) by Subject "Aerodynamics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Aerodynamics and performance enhancement of a ground-effect diffuser(2018-04) Ehirim, O H; Knowles, Kevin; Saddington, Alistair J.This study involved experimental and equivalent computational investigations into the automobile-type 3―D flow physics of a diffuser bluff body in ground-effect and novel passive flow-control methods applied to the diffuser flow to enhance the diffuser’s aerodynamic performance. The bluff body used in this study is an Ahmed-like body employed in an inverted position with the slanted section together with the addition of side plates along both sides forming the ramped diffuser section. The first part of the study confirmed reported observations from previous studies that the downforce generated by the diffuser in proximity to a ground plane is influenced by the peak suction at the diffuser inlet and subsequent static pressure-recovery towards the diffuser exit. Also, when the bluff body ride height is gradually reduced from high to low, the diffuser flow as indicated by its force curve and surface flow features undergoes four distinct flow regimes (types A to D). The types A and B regimes are reasonably symmetrical, made up of two low-pressure core longitudinal vortices travelling along both sides of the diffuser length and they increase downforce and drag with reducing ride height. However, below the ride heights of the type B regime, types C and D regimes are asymmetrical because of the breakdown of one vortex; consequently a significant loss in downforce and drag occurs. The second part of the study involved the use ― near the diffuser exit ― of a convex bump on the diffuser ramp surface and an inverted wing between the diffuser side plates as passive flow control devices. The modification of the diffuser geometry with these devices employed individually or in combination, induced a second-stage pressure-drop and recovery near the diffuser exit. This behaviour was due to the radial pressure gradient induced on the diffuser flow by the suction surface ii curvature of the passive devices. As a result of this aerodynamic phenomenon, the diffuser generated across the flow regimes additional downforce, and a marginal increase in drag due to the profile drag induced by the devices.Item Open Access The effects of scaling and high subsonic cavity flow and control(2014-08-15) Thangamani, Varun; Saddington, Alistair J.; Knowles, KevinThe effects of scaling a cavity with respect to a fixed incoming boundary layer thickness on its flow dynamics and control was studied experimentally. Three cavity models with constant length-to-depth ratio of 5 and length-to-width ratio of 2 and with corresponding linear dimensions in the ratio 0.5 : 1 : 2 were tested at freestream Mach number 0.71. Additionally, the 0.5 and 1 scale models were tested at freestream Mach number of 0.85. The experiments involved timeaveraged pressure measurements, unsteady pressure measurements, and PIV measurements. Time-averaged pressure measurements made at the floor were used to study the ’flow-type’ of the cavities. Unsteady pressure measurements were used to study the acoustic characteristics of the cavity. The cavity length-to-boundary layer thickness ratios tested were 10, 20 and 40. The Cp distribution on the clean cavities indicated a change in the cavity flowtype with change in the cavity scale. Varying the L/δ from 10 to 40 changed the cavity flow-type from open to transitional. Analysis of the frequency spectra of the cavity revealed an increase in tonal amplitudes and OASPL with increasing L/δ . The PIV measurements indicated that this could be caused by an increase in energy exchange between the freestream and the cavity. The velocity magnitudes inside the cavities were found to increase with increase in L/δ . A comparative study of different passive control methods on the largest cavity showed that leading-edge spoilers were superior in cavity tone suppression. Of these, the effectiveness of a sawtooth spoiler on the three cavities of different scales was tested. The results showed that while the spoiler was effective in eliminating tones and suppression of noise for the smaller cavities, it was unable to eliminate the tones completely for the largest cavity. To find the correct method for scaling the spoilers with the cavity dimensions, different spoiler heights were tested on the three cavities. The results showed that the cavity noise suppression for a given cavity attains saturation level at a particular spoiler height, called the critical spoiler height. An increase in spoiler height beyond the critical spoiler height was found to have no effect on the noise suppression. It is also found that this critical spoiler height can be scaled with the length of the cavity (for given L/D, M and spoiler profile) irrespective of the boundary layer thickness.