PhD and Masters by research theses (SoE)
Permanent URI for this collection
Browse
Browsing PhD and Masters by research theses (SoE) by Supervisor "Bannister, R. H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Acoustic emission detection of fatigue crack propagation in a power station steam chest environment(Cranfield University, 1997-02) Cook, J.; Bannister, R. H.This thesis addresses the problem of detecting and positively identifying the approximately known acoustic emission signatures produced through fatigue crack propagation in power station steam chests. This work includes extensive laboratory fatigue testing to produce and record signatures in specimens fabricated from the steam chest steel, on-site recording of the ambience noise levels from a fully operating oil-burning power station and develops and demonstrates the effectiveness of various signal processing techniques at extracting the signatures embedded in the noise. This noise is high amplitude, giving us a low signal to noise ratio, and is broad in the frequency domain, with both regular and irregular high-amplitude metallic noise transients that cover the entire frequency range of interest. It is therefore essential to use sophisticated signal post-processing techniques to detect and to identify the crack signatures. The post-processing techniques developed and employed include time-frequency transformations, matched filters and signal expansion filters implemented in both in the time domain and in various two-dimensional time-frequency domains. From a performance comparison, both on the experimentally recorded data and on data digitally generated for the purpose, we determine the optimum signal processing method for our requirements and provide an assessment of the relative computational efficiencies. Generated for comparison are spurious but similar signatures characteristic of the power station steam chest environment; oxide crushing within an existing dormant crack and stress corrosion cracking signatures produced by the same steel constantly loaded in a corrosive environment. It is demonstrated that there is sufficient distinction between these signatures and those produced by crack propagation.Item Open Access Mixed modal balancing of flexible rotors without trial runs(Cranfield University, 1998-09) Preciado Delgado, E.; Bannister, R. H.The subject of this thesis is about the balancing of large flexible rotors which exhibit mixed modal characteristics. The objective of the research was to develop a balancing procedure to determine correction masses without trial runs. This required the determination of(a) the modal vibration vectors for each resonance, (b) the modal damping ratios,(c) the mode shapes and(d) the equivalent mass of the rotor for each mode. It was made clear from the beginning that trial runs are unavoidable either, when the mode shapes cannot be determined using an analytical or numerical method, or when there is dual vibration at normal operating speed, produced by the influence of higher unbalanced modes, is too high to allow continuous operation of the machine. Therefore, the scope of the project was limited to the possible determination of correction masses without trial runs for the vibration modes included within the normal operating range. Some studies about the minimisation or complete elimination of trial runs have been published by several authors, but a literature search revealed no reports of systematic application of these procedures to field balancing of large turbo generators. This suggested that some practical difficulties had still to be overcome, opening the possibility for further research on this area. Analysis of the rotor response demonstrated the necessity of considering the angular position of the transducers when registering the rotor vibration. It was shown that measuring in a direction other than those of the principal axes of stiffness introduces errors when determining the magnitude and phase of the correction masses. That is to say, failing to consider the effects of the transducer angular position eliminates the possibility of balancing the rotor without trial runs. This is the first time that this problem has been recognised. The procedure developed was verified using an experimental rotor rig. The successful application of the procedure to the balancing of this rotor demonstrates that balancing withouttrialrunsisnotonlyatheoreticalbutalsoapracticalpossibility. The dynamic characteristics of the rotor rig, however, were some what limited and did not cover all the possibilities considered during the project. Therefore, a more complete numerical example was also successfully solved using the computer model of a rotor with characteristics similar to those of a real turbine, and whose unbalanced distribution was not initially known by this author.Item Open Access The use of high frequency stress waves for monitoring gears(Cranfield University, 1995-09) Al-Balushi, K. R. N.; Bannister, R. H.The aim of this research is to investigate the feasibility of using stress waves for condition monitoring of gears. The project involved setting up an experimental rig, carrying out experimental work, acquiring stress waves signatures, and processing the signals. It has been shown that stress waves can successfully be employed for early detection of incipient gear failure. A experimental gearbox was employed during the experiments. Miniature ultrasound transducers, both sensitive and sufficiently small, were manufactured and installed on the stationary outer race of the rolling element bearing of the gearbox to detect stress waves from the meshing gears. The stress waves signals from the transducers were digitised and digitally processed to extract relevant information. The signatures were high-pass filtered at a cut-off frequency of 200 kHz, thus representing exclusive ultrasonic frequencies. A new statistical parameter, Energy Index, was developed and performed on the stress wave signatures which were segmented to represent individual gear teeth. Along with this new parameter, the classical statistical parameters, (Peaks, RMS, Standard Deviation, Kurtosis, etc.) were also performed. Conclusive results are presented in graphical form in terms of Cumulative Energy Indices' and Energy Indices in polar form for individual gear teeth. A new algorithrn was also developed and presented for the envelope detection of signal by iterative peak detection. Although no direct comparison was made between condition monitoring of gears using stress waves and methods such as low frequency vibration analysis and wear debris analysis, it is apparent that stress waves monitoring offers a much earlier warning of incipient gear failure because the technique can detect material defonnations which are precursors to changes in the dynamic properties of gears and the occurrence of wear debris. The technique, therefore, can predict incipient failure much earlier, extending the lead-time before failure, and as a result, minimising sudden failures which may have catastrophic consequences.