In situ nanoconfinement catalysis for highly efficient redox transformation
dc.contributor.author | Chen, Yuhan | |
dc.contributor.author | Tan, Jisheng | |
dc.contributor.author | Chao, Jingbo | |
dc.contributor.author | Zhang, Jingqi | |
dc.contributor.author | Tang, Yang | |
dc.contributor.author | Liu, Yanping | |
dc.contributor.author | Hu, Qing | |
dc.contributor.author | Coulon, Frederic | |
dc.contributor.author | Yang, Xiao Jin | |
dc.date.accessioned | 2024-11-20T15:06:12Z | |
dc.date.available | 2024-11-20T15:06:12Z | |
dc.date.freetoread | 2024-11-20 | |
dc.date.issued | 2024-11-13 | |
dc.date.pubOnline | 2024-11-01 | |
dc.description.abstract | The rapid reduction of Cr(VI) across a wide pH range, from acidic to alkaline pH conditions to stable Cr(III) species for efficient remediation of Cr(VI) pollution, has long been a challenge. Herein, we propose a new concept of <i>in situ</i> nanoconfinement catalysis (<i>i</i>NCC) for highly efficient remediation of Cr(VI) by growing nanosheets of <i>in situ</i> layered double hydroxide (<i>i</i>LDH) on the surface of Al-Mg-Fe alloy achieving chemical reduction rates of >99% in 1 min from pH 3 to 11 for 100 mg L<sup>-1</sup> Cr(VI) with a rate constant of 201 h<sup>-1</sup>. In stark contrast, the reduction rate is less than 6% in 12 h with a rate constant of 0.77 h<sup>-1</sup> for the pristine Al-Mg-Fe alloy. The ultrafast reduction of Cr(VI) is most likely attributed to the synergistic catalysis of Al<sub>12</sub>Mg<sub>17</sub> and Al<sub>13</sub>Fe<sub>4</sub> and nanoconfinement of MgAlFe-<i>i</i>LDH and superstable mineralization of Cr(III) by MgAlCr<sup>III</sup>- and MgFeCr<sup>III</sup>-<i>i</i>LDHs. This study demonstrates the potential of <i>in situ</i> nanoconfinement catalysis on redox transformation for environmental remediation. | |
dc.description.journalName | ACS Applied Materials and Interfaces | |
dc.format.extent | 62010–62021 | |
dc.format.medium | Print-Electronic | |
dc.identifier.citation | Chen Y, Tan J, Chao J, et al., (2024) In situ nanoconfinement catalysis for highly efficient redox transformation. ACS Applied Materials and Interfaces, Volume 16, Issue 45, November 2024, pp. 62010–62021 | |
dc.identifier.eissn | 1944-8252 | |
dc.identifier.elementsID | 558559 | |
dc.identifier.issn | 1944-8244 | |
dc.identifier.uri | https://doi.org/10.1021/acsami.4c12409 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/23208 | |
dc.language | English | |
dc.language.iso | en | |
dc.publisher | American Chemical Society | |
dc.publisher.uri | https://pubs.acs.org/doi/10.1021/acsami.4c12409 | |
dc.rights | Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 34 Chemical Sciences | |
dc.subject | Al alloy intermetallic | |
dc.subject | Al−Mg−Fe alloy | |
dc.subject | hexavalent chromium | |
dc.subject | in situ layered double hydroxide | |
dc.subject | in situ nanoconfinement catalysis | |
dc.subject | intercalation reaction | |
dc.subject | redox transformation | |
dc.subject | Nanoscience & Nanotechnology | |
dc.subject | 34 Chemical sciences | |
dc.subject | 40 Engineering | |
dc.subject | 51 Physical sciences | |
dc.title | In situ nanoconfinement catalysis for highly efficient redox transformation | |
dc.type | Article | |
dc.type.subtype | Journal Article | |
dcterms.dateAccepted | 2024-10 |