Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images

dc.contributor.authorHouston, A. N.
dc.contributor.authorOtten, Wilfred
dc.contributor.authorFalconer, R.
dc.contributor.authorMonga, O.
dc.contributor.authorBaveye, P. C.
dc.contributor.authorHapca, S. M.
dc.date.accessioned2017-05-18T13:10:54Z
dc.date.available2017-05-18T13:10:54Z
dc.date.issued2017-04-06
dc.description.abstractThe pore size distribution (PSD) of the void space is widely used to predict a range of processes in soils. Recent advances in X-ray computed tomography (CT) now afford novel ways to obtain exact data on pore geometry, which has stimulated the development of algorithms to estimate the pore size distribution from 3D data sets. To date there is however no clear consensus on how PSDs should be estimated, and in what form PSDs are best presented. In this article, we first review the theoretical principles shared by the various methods for PSD estimation. Then we select methods that are widely adopted in soil science and geoscience, and we use a robust statistical method to compare their application to synthetic image samples, for which analytical solutions of PSDs are available, and X-ray CT images of soil samples selected from different treatments to obtain wide ranging PSDs. Results indicate that, when applied to the synthetic images, all methods presenting PSDs as pore volume per class size (i.e., Avizo, CTAnalyser, BoneJ, Quantim4, and DTM), perform well. Among them, the methods based on Maximum Inscribed Balls (Bone J, CTAnalyser, Quantim4) also produce similar PSDs for the soil samples, whereas the Delaunay Triangulation Method (DTM) produces larger estimates of the pore volume occupied by small pores, and Avizo yields larger estimates of the pore volume occupied by large pores. By contrast, the methods that calculate PSDs as object population fraction per volume class (Avizo, 3DMA, DFS-FIJI) perform inconsistently on the synthetic images and do not appear well suited to handle the more complex geometries of soils. It is anticipated that the extensive evaluation of method performance carried out in this study, together with the recommendations reached, will be useful to the porous media community to make more informed choices relative to suitable PSD estimation methods, and will help improve current practice, which is often ad hoc and heuristic.en_UK
dc.identifier.citationA.N. Houston, W. Otten, R. Falconer, O. Monga, P.C. Baveye, S.M. Hapca, Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images, Geoderma, Volume 299, 1 August 2017, pp73-82en_UK
dc.identifier.cris17159020
dc.identifier.issn0016-7061
dc.identifier.urihttp://dx.doi.org/10.1016/j.geoderma.2017.03.025
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/11914
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPorous mediaen_UK
dc.subjectSoilen_UK
dc.subjectPore size distributionen_UK
dc.subjectComputed tomographyen_UK
dc.subjectX-rayen_UK
dc.titleQuantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D imagesen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantification_of_the_pore_size_distribution_of_soils-2017.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: