Benign/Cancer diagnostics based on X-ray diffraction: comparison of data analytics approaches

dc.contributor.authorAlekseev, Alexander
dc.contributor.authorShcherbakov, Viacheslav
dc.contributor.authorAvdieiev, Oleksii
dc.contributor.authorDenisov, Sergey A.
dc.contributor.authorKubytskyi, Viacheslav
dc.contributor.authorBlinchevsky, Benjamin
dc.contributor.authorMurokh, Sasha
dc.contributor.authorAjeer, Ashkan
dc.contributor.authorAdams, Lois
dc.contributor.authorGreenwood, Charlene
dc.contributor.authorRogers, Keith
dc.contributor.authorJones, Louise
dc.contributor.authorMourokh, Lev
dc.contributor.authorLazarev, Pavel
dc.date.accessioned2025-06-26T13:46:01Z
dc.date.available2025-06-26T13:46:01Z
dc.date.freetoread2025-06-26
dc.date.issued2025-05-14
dc.date.pubOnline2025-05-14
dc.descriptionThis article belongs to the Special Issue Application of Biostatistics in Cancer Research
dc.description.abstractBackground/Objectives: With the number of detected breast cancer cases growing every year, there is a need to augment histopathological analysis with fast preliminary screening. We examine the feasibility of using X-ray diffraction measurements for this purpose. Methods: In this work, we obtained more than 6000 diffraction patterns from 211 patients and examined both standard and custom-developed methods, including Fourier coefficient analysis, for their interpretation. Various preprocessing steps and machine learning classifiers were compared to determine the optimal combination. Results: We demonstrated that benign and cancerous clusters are well separated, with specificity and sensitivity exceeding 0.9. For wide-angle scattering, the two-dimensional Fourier method is superior, while for small angles, the conventional analysis based on azimuthal integration of the images provides similar metrics. Conclusions: X-ray diffraction of biopsy tissues, supported by machine learning approaches to data analytics, can be an essential tool for pathological services. The method is rapid and inexpensive, providing excellent metrics for benign/cancer classification.
dc.description.journalNameCancers
dc.identifier.citationAlekseev A, Shcherbakov V, Avdieiev O, et al., (2025) Benign/Cancer diagnostics based on X-ray diffraction: comparison of data analytics approaches. Cancers, Volume 17, Issue 10, May 2025, Article number 1662en_UK
dc.identifier.eissn2072-6694
dc.identifier.elementsID673362
dc.identifier.issn2072-6694
dc.identifier.issueNo10
dc.identifier.paperNo1662
dc.identifier.urihttps://doi.org/10.3390/cancers17101662
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/24042
dc.identifier.volumeNo17
dc.languageEnglish
dc.language.isoen
dc.publisherMDPIen_UK
dc.publisher.urihttps://www.mdpi.com/2072-6694/17/10/1662
dc.relation.isreferencedbyhttps://zenodo.org/records/15129858
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectstructural biomarkersen_UK
dc.subjectX-ray diffractionen_UK
dc.subjectbreast cancer diagnosticsen_UK
dc.subjectmachine learningen_UK
dc.subjectFourier transformationen_UK
dc.subject32 Biomedical and Clinical Sciencesen_UK
dc.subject3211 Oncology and Carcinogenesisen_UK
dc.subjectBioengineeringen_UK
dc.subjectCanceren_UK
dc.subjectBreast Canceren_UK
dc.subjectWomen's Healthen_UK
dc.subjectMachine Learning and Artificial Intelligenceen_UK
dc.subjectNetworking and Information Technology R&D (NITRD)en_UK
dc.subject4.1 Discovery and preclinical testing of markers and technologiesen_UK
dc.titleBenign/Cancer diagnostics based on X-ray diffraction: comparison of data analytics approachesen_UK
dc.typeArticle
dc.type.subtypeJournal Article
dcterms.dateAccepted2025-05-13

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Benign_cancer_diagnostics-2025.pdf
Size:
3.37 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: