Impact of indium doping in lead-free (CH3NH3)3Bi2-xInxI9 perovskite photovoltaics for indoor and outdoor light harvesting
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Course name
Type
ISSN
Format
Citation
Abstract
Hybrid halide perovskites (HHPs) have revolutionized the field of solar cells due to their low cost, solution-processable synthesis, and exceptional device performance. Although lead (Pb)-based perovskites are currently the most efficient, their application in indoor photovoltaics and wearable electronics is limited by lead’s toxicity. This has intensified the search for Pb-free alternatives, particularly for use in portable electronic devices. In this study, we utilized a vapor-assisted solution process to systematically engineer the composition of bismuth-based perovskite-inspired materials (PIMs) through indium doping, forming homogeneous and pinhole-free (CH3NH3)3Bi2–xInxI9 (Bi–In) films. These bimetallic Bi–In perovskites exhibit enhanced properties, including high recombination resistance, reduced low-frequency capacitance, lower defect density, and minimal microstrain. Electrochemical impedance spectroscopy (EIS) shows significantly reduced ion migration in Bi–In compositions compared with pure bismuth-based counterparts. The optimized Bi–In-based solar cells achieved a power conversion efficiency (PCE) of 2.5% under outdoor illumination and 5.9% under indoor lighting, showcasing their potential as promising lead-free alternatives for photovoltaic applications.