Unmanned aerial vehicles versus smart grids

dc.contributor.authorPengfei Zhao, Alexis
dc.contributor.authorLi, Shuangqi
dc.contributor.authorHuo, Da
dc.contributor.authorAlhazmi, Mohannad
dc.date.accessioned2025-03-03T13:18:53Z
dc.date.available2025-03-03T13:18:53Z
dc.date.freetoread2025-03-03
dc.date.issued2025-01
dc.date.pubOnline2025-02-17
dc.description.abstractThe increasing threat of unmanned aerial vehicles (UAVs) to smart grid infrastructures poses critical challenges to energy systems security. This study examines smart grid vulnerabilities to UAV‐based attacks and proposes a novel optimisation framework to enhance grid resilience. Employing a multi‐objective optimisation approach using the Non‐dominated Sorting Genetic Algorithm III (NSGA‐III) and a game‐theoretic Stackelberg model, the research captures the strategic interplay between UAV operators and grid defenders. Key contributions include the development of a multi‐objective optimisation framework, integration of adversarial game theory, incorporation of dynamic environmental conditions, and generation of Pareto‐optimal solutions for strategic defence planning. This research makes four pivotal contributions: (a) the design of a comprehensive multi‐objective optimisation framework tailored for UAV strike optimisation, (b) the integration of game‐theoretic principles to model adversarial behaviours, (c) the inclusion of dynamic environmental factors to improve solution robustness, and (d) the application of NSGA‐III to generate trade‐off solutions, equipping decision‐makers with diverse strategies to enhance grid resilience. By addressing an urgent and timely challenge, this work offers practical guidance for fortifying smart grid infrastructures against emerging UAV threats in increasingly complex operational environments.
dc.description.journalNameIET Smart Grid
dc.description.sponsorshipThe authors would like to acknowledge the support provided by the Researchers Supporting Project (Project number:RSPD2025R635), King Saud University, Riyadh, Saudi Arabia.
dc.identifier.citationPengfei Zhao A, Li S, Huo D, Alhazmi M. (2025) Unmanned aerial vehicles versus smart grids. IET Smart Grid, Volume 8, Issue 1, January/December 2025, Article number e70000en_UK
dc.identifier.eissn2515-2947
dc.identifier.elementsID565568
dc.identifier.issn2515-2947
dc.identifier.issueNo1
dc.identifier.paperNoe70000
dc.identifier.urihttps://doi.org/10.1049/stg2.70000
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23555
dc.identifier.volumeNo8
dc.languageEnglish
dc.language.isoen
dc.publisherInstitution of Engineering and Technology (IET)en_UK
dc.publisher.urihttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/stg2.70000
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject40 Engineeringen_UK
dc.subject4008 Electrical Engineeringen_UK
dc.subject4009 Electronics, Sensors and Digital Hardwareen_UK
dc.subject7 Affordable and Clean Energyen_UK
dc.subject11 Sustainable Cities and Communitiesen_UK
dc.subjectfault diagnosisen_UK
dc.subjectoptimisationen_UK
dc.subjectpower system managementen_UK
dc.titleUnmanned aerial vehicles versus smart gridsen_UK
dc.typeArticle
dcterms.dateAccepted2025-01-10

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unmanned_aerial_vehicles_versus_smart_grids-2025.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: