Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Course name
Type
ISSN
Format
Citation
Abstract
An effective and reliable gas path diagnostic method that could be used to detect, isolate, and identify gas turbine degradations is crucial in a gas turbine condition-based maintenance. In this paper, we proposed a new combined technique of artificial neural network and support vector machine for a two-shaft industrial gas turbine engine gas path diagnostics. To this end, an autoassociative neural network is used as a preprocessor to minimize noise and generate necessary features, a nested support vector machine to classify gas path faults, and a multilayer perceptron to assess the magnitude of the faults. The necessary data to train and test the method are obtained from a performance model of the case engine under steady-state operating conditions. The test results indicate that the proposed method can diagnose both single- and multiple-component faults successfully and shows a clear advantage over some other methods in terms of multiple fault diagnosis. Moreover, 5-8 sets of measurements have been used to assess the prediction accuracy, and only a 2.3% difference was observed. This result indicates that the proposed method can be used for multiple fault diagnosis of gas turbines with limited measurements.