Enhancing situational awareness of helicopter pilots in unmanned aerial vehicle-congested environments using an airborne visual artificial intelligence approach

dc.contributor.authorMugabe, John
dc.contributor.authorWisniewski, Mariusz
dc.contributor.authorPerrusquía, Adolfo
dc.contributor.authorGuo, Weisi
dc.date.accessioned2025-01-08T16:06:22Z
dc.date.available2025-01-08T16:06:22Z
dc.date.freetoread2025-01-08
dc.date.issued2024-12-04
dc.date.pubOnline2024-12-04
dc.description.abstractThe use of drones or Unmanned Aerial Vehicles (UAVs) and other flying vehicles has increased exponentially in the last decade. These devices pose a serious threat to helicopter pilots who constantly seek to maintain situational awareness while flying to avoid objects that might lead to a collision. In this paper, an Airborne Visual Artificial Intelligence System is proposed that seeks to improve helicopter pilots’ situational awareness (SA) under UAV-congested environments. Specifically, the system is capable of detecting UAVs, estimating their distance, predicting the probability of collision, and sending an alert to the pilot accordingly. To this end, we aim to combine the strengths of both spatial and temporal deep learning models and classic computer stereo vision to (1) estimate the depth of UAVs, (2) predict potential collisions with other UAVs in the sky, and (3) provide alerts for the pilot with regards to the drone that is likely to collide. The feasibility of integrating artificial intelligence into a comprehensive SA system is herein illustrated and can potentially contribute to the future of autonomous aircraft applications.
dc.description.journalNameSensors
dc.format.mediumElectronic
dc.identifier.citationMugabe J, Wisniewski M, Perrusquía A, Guo W. (2024) Enhancing situational awareness of helicopter pilots in unmanned aerial vehicle-congested environments using an airborne visual artificial intelligence approach. Sensors, Volume 24, Issue 23, December 2024, Article number 7762en_UK
dc.identifier.eissn1424-8220
dc.identifier.elementsID560122
dc.identifier.issn1424-8220
dc.identifier.issueNo23
dc.identifier.paperNo7762
dc.identifier.urihttps://doi.org/10.3390/s24237762
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23346
dc.identifier.volumeNo24
dc.languageEnglish
dc.language.isoen
dc.publisherMDPIen_UK
dc.publisher.urihttps://www.mdpi.com/1424-8220/24/23/7762
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectsituational awarenessen_UK
dc.subjectdeep learningen_UK
dc.subjectcomputer visionen_UK
dc.subjectstereo visionen_UK
dc.subjectStereoNeten_UK
dc.subjectLong Short-Term Memory (LSTM)en_UK
dc.subjectthreshold-based alert systemen_UK
dc.subject40 Engineeringen_UK
dc.subject4001 Aerospace Engineeringen_UK
dc.subject46 Information and Computing Sciencesen_UK
dc.subject4602 Artificial Intelligenceen_UK
dc.subject4605 Data Management and Data Scienceen_UK
dc.subjectMachine Learning and Artificial Intelligenceen_UK
dc.subjectAnalytical Chemistryen_UK
dc.subject3103 Ecologyen_UK
dc.subject4008 Electrical engineeringen_UK
dc.subject4009 Electronics, sensors and digital hardwareen_UK
dc.subject4104 Environmental managementen_UK
dc.subject4606 Distributed computing and systems softwareen_UK
dc.titleEnhancing situational awareness of helicopter pilots in unmanned aerial vehicle-congested environments using an airborne visual artificial intelligence approachen_UK
dc.typeArticle
dc.type.subtypeJournal Article
dcterms.dateAccepted2024-12-03

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhancing_situational_awareness-2024.pdf
Size:
3.02 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: