The lean and green imperative of manufacturing data

dc.contributor.authorPatsavellas, John
dc.contributor.authorHaddad, Yousef
dc.contributor.authorSalonitis, Konstantinos
dc.date.accessioned2025-07-09T13:29:05Z
dc.date.available2025-07-09T13:29:05Z
dc.date.freetoread2025-07-09
dc.date.issued2024-10-09
dc.date.pubOnline2025-06-27
dc.description.abstractThis study introduces a stochastic model-based framework for the prediction and measurement of the environmental impact of manufacturing systems’ digitalization. Utilising a Monte Carlo simulation experimental framework, this paper forecasts the CO2e emissions from the entire lifecycle of manufacturing data over long-term time horizon under different scenarios. The analysis proceeds to estimate the maximum, average, and minimum potential CO2e emissions, under different growth models. Findings reveal that, with the current exponential growth of data that exceeds data centres’ efficiency improvements and carbon intensity decay rates, the environmental footprint associated with the entire lifecycle of data can have a potential adverse impact on the realisation of net-zero goals. The proposed approach provides a viable pathway for manufacturing enterprises aiming to align their data management practices with environmental sustainability and operational efficiency.
dc.description.bookTitleLecture Notes in Mechanical Engineering
dc.description.conferencename20th Global Conference on Sustainable Manufacturing (GCSM 2024)
dc.format.extentpp. 128-136
dc.identifier.citationPatsavellas J, Haddad Y, Salonitis K. (2025) The lean and green imperative of manufacturing data. In: Decarbonizing Value Chains. 20th Global Conference on Sustainable Manufacturing (GCSM 2024), 9-11 October 2024, Ho Chi Minh City, Vietnam. Lecture Notes in Mechanical Engineering, pp. 128-136en_UK
dc.identifier.eisbn978-3-031-93891-7
dc.identifier.elementsID673939
dc.identifier.isbn978-3-031-93890-0
dc.identifier.urihttps://doi.org/10.1007/978-3-031-93891-7_15
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/24144
dc.language.isoen
dc.publisherSpringeren_UK
dc.publisher.urihttps://link.springer.com/chapter/10.1007/978-3-031-93891-7_15
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDigitalizationen_UK
dc.subjectIndustry 4.0en_UK
dc.subjectMonte Carlo Simulationen_UK
dc.subjectSustainable Dataen_UK
dc.titleThe lean and green imperative of manufacturing dataen_UK
dc.typeConference paper
dcterms.coverageHo Chi Minh City, Vietnam
dcterms.dateAccepted2024
dcterms.temporal.endDate11 Oct 2024
dcterms.temporal.startDate9 Oct 2024

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Lean_and_Green-2025.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: