Life cycle analysis of ammonia-driven calcium looping processes for post-combustion CO2 capture in NGCC power plants
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Course name
Type
ISSN
Format
Citation
Abstract
Integrating calcium looping (CaL) based carbon capture and storage (CCS) technology with an existing natural gas combined cycle (NGCC) power plants offers a promising solution for low-carbon energy production. This work introduces a novel NH3-driven CaL process for retrofitting NGCC plants. The economic performance and environmental impacts of the process were analyzed through life cycle analysis and compared with those of conventional oxy-fuel CaL and solar-driven CaL technologies. Results indicate that, the NH3-driven CaL demonstrates with a very low energy penalty of only 2.6 points, while the solar-driven CaL method faces a 14-points energy penalty. From an environmental perspective, the NH3-driven CaL method, with considering various ammonia sources, significantly impacts the environment more than oxy-fuel and solar-driven methods, with global warming potential values of 207.7 (oxy-fuel), 170.7 (solar), and 197.6–258.8 g CO2-eq/kWh (green NH3). Economically, based on an annual operation time of 4000 h of NGCC, the solar-driven CaL system has the lowest Life Cycle Cost of GHG Removed (LCOR) at 247.7 $/t CO2. With anticipated reductions in ammonia prices to 240 $/t in 2050, the NH3-driven CaL system is expected to gain a significant advantage in economic at 46.5 $/t CO2 when natural gas price is 0.6 $/Nm3. And it is important to pay attention the clean production process of ammonia to reduce its impact on the environment.