Random wavelet kernels for interpretable fault diagnosis in industrial systems
dc.contributor.author | Deng, Haoxuan | |
dc.contributor.author | Khan, Samir | |
dc.contributor.author | Erkoyuncu, John Ahmet | |
dc.date.accessioned | 2025-07-15T14:07:55Z | |
dc.date.available | 2025-07-15T14:07:55Z | |
dc.date.freetoread | 2025-07-15 | |
dc.date.issued | 2025 | |
dc.date.pubOnline | 2025-05-13 | |
dc.description.abstract | Deep learning is a powerful method for fault diagnosis, but its "black-box" nature raises concerns in critical applications. This paper presents an interpretable, lightweight method combining random convolution kernel transformation (ROCKET) with wavelet kernels, which offer systematic time-frequency analysis and intuitive insights. Principal component analysis (PCA) is used to extract relevant patterns, forming a health indicator that guides maintenance decisions. A case study on linear actuator fault diagnosis demonstrates the method's balance of interpretability and computational efficiency, making it a valuable tool for reliable asset health monitoring in resource-limited settings. | |
dc.description.journalName | CIRP Annals | |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) | |
dc.description.sponsorship | The research was partially supported with EPSRC funding (EP/P027121/1). | |
dc.format.extent | pp. 49-53 | |
dc.identifier.citation | Deng H, Khan S, Erkoyuncu JA. (2025) Random wavelet kernels for interpretable fault diagnosis in industrial systems. CIRP Annals, Volume 74, Issue 1, 2025, pp. 49-53 | en_UK |
dc.identifier.eissn | 1726-0604 | |
dc.identifier.elementsID | 673340 | |
dc.identifier.issn | 0007-8506 | |
dc.identifier.issueNo | 1 | |
dc.identifier.uri | https://doi.org/10.1016/j.cirp.2025.04.083 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/23997 | |
dc.identifier.volumeNo | 74 | |
dc.language | English | |
dc.language.iso | en | |
dc.publisher | Elsevier | en_UK |
dc.publisher.uri | https://www.sciencedirect.com/science/article/pii/S0007850625001295?via%3Dihub | |
dc.relation.isreferencedby | https://doi.org/10.17862/cranfield.rd.5097649. | |
dc.rights | Attribution 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 40 Engineering | en_UK |
dc.subject | 4010 Engineering Practice and Education | en_UK |
dc.subject | Industrial Engineering & Automation | en_UK |
dc.subject | 4014 Manufacturing engineering | en_UK |
dc.subject | 4017 Mechanical engineering | en_UK |
dc.subject | Failure | en_UK |
dc.subject | Machine learning | en_UK |
dc.subject | Maintenance | en_UK |
dc.title | Random wavelet kernels for interpretable fault diagnosis in industrial systems | en_UK |
dc.type | Article | |
dc.type.subtype | Journal Article |