Random wavelet kernels for interpretable fault diagnosis in industrial systems

dc.contributor.authorDeng, Haoxuan
dc.contributor.authorKhan, Samir
dc.contributor.authorErkoyuncu, John Ahmet
dc.date.accessioned2025-07-15T14:07:55Z
dc.date.available2025-07-15T14:07:55Z
dc.date.freetoread2025-07-15
dc.date.issued2025
dc.date.pubOnline2025-05-13
dc.description.abstractDeep learning is a powerful method for fault diagnosis, but its "black-box" nature raises concerns in critical applications. This paper presents an interpretable, lightweight method combining random convolution kernel transformation (ROCKET) with wavelet kernels, which offer systematic time-frequency analysis and intuitive insights. Principal component analysis (PCA) is used to extract relevant patterns, forming a health indicator that guides maintenance decisions. A case study on linear actuator fault diagnosis demonstrates the method's balance of interpretability and computational efficiency, making it a valuable tool for reliable asset health monitoring in resource-limited settings.
dc.description.journalNameCIRP Annals
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)
dc.description.sponsorshipThe research was partially supported with EPSRC funding (EP/P027121/1).
dc.format.extentpp. 49-53
dc.identifier.citationDeng H, Khan S, Erkoyuncu JA. (2025) Random wavelet kernels for interpretable fault diagnosis in industrial systems. CIRP Annals, Volume 74, Issue 1, 2025, pp. 49-53en_UK
dc.identifier.eissn1726-0604
dc.identifier.elementsID673340
dc.identifier.issn0007-8506
dc.identifier.issueNo1
dc.identifier.urihttps://doi.org/10.1016/j.cirp.2025.04.083
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23997
dc.identifier.volumeNo74
dc.languageEnglish
dc.language.isoen
dc.publisherElsevieren_UK
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S0007850625001295?via%3Dihub
dc.relation.isreferencedbyhttps://doi.org/10.17862/cranfield.rd.5097649.
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject40 Engineeringen_UK
dc.subject4010 Engineering Practice and Educationen_UK
dc.subjectIndustrial Engineering & Automationen_UK
dc.subject4014 Manufacturing engineeringen_UK
dc.subject4017 Mechanical engineeringen_UK
dc.subjectFailureen_UK
dc.subjectMachine learningen_UK
dc.subjectMaintenanceen_UK
dc.titleRandom wavelet kernels for interpretable fault diagnosis in industrial systemsen_UK
dc.typeArticle
dc.type.subtypeJournal Article

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Random_wavelet_kernels-2025.pdf
Size:
844.26 KB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: