Histogram of distances for local surface description
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Course name
Type
ISSN
Format
Citation
Abstract
3D object recognition is proven superior compared to its 2D counterpart with numerous implementations, making it a current research topic. Local based proposals specifically, although being quite accurate, they limit their performance on the stability of their local reference frame or axis (LRF/A) on which the descriptors are defined. Additionally, extra processing time is demanded to estimate the LRF for each local patch. We propose a 3D descriptor which overrides the necessity of a LRF/A reducing dramatically processing time needed. In addition robustness to high levels of noise and non-uniform subsampling is achieved. Our approach, namely Histogram of Distances is based on multiple L2-norm metrics of local patches providing a simple and fast to compute descriptor suitable for time-critical applications. Evaluation on both high and low quality popular point clouds showed its promising performance.