Novel spectral kurtosis technology for adaptive vibration condition monitoring of multi-stage gearboxes

Loading...
Thumbnail Image

Date published

Free to read from

Authors

Gelman, Leonid
Harish Chandra, N.
Kurosz, R.
Pellicano, F.
Barbieri, M.
Zippo, A.

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Department

Course name

ISSN

1354-2575

Format

Citation

Gelman, L; Chandra, N Harish et al. Novel spectral kurtosis technology for adaptive vibration condition monitoring of multi-stage gearboxes, Insight - Non-Destructive Testing & Condition Monitoring, Volume 58, Number 8, August 2016, pp. 409-416

Abstract

In this paper, the novel wavelet spectral kurtosis (WSK) technique is applied for the early diagnosis of gear tooth faults. Two variants of the wavelet spectral kurtosis technique, called variable resolution WSK and constant resolution WSK, are considered for the diagnosis of pitting gear faults. The gear residual signal, obtained by filtering the gear mesh frequencies, is used as the input to the SK algorithm. The advantages of using the wavelet-based SK techniques when compared to classical Fourier transform (FT)-based SK is confirmed by estimating the toothwise Fisher's criterion of diagnostic features. The final diagnosis decision is made by a three-stage decision-making technique based on the weighted majority rule. The probability of the correct diagnosis is estimated for each SK technique for comparison. An experimental study is presented in detail to test the performance of the wavelet spectral kurtosis techniques and the decision-making technique.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution-NonCommercial 4.0 International

Funder/s

Relationships

Relationships

Resources