Trajectory inference of unknown linear systems based on partial states measurements

dc.contributor.authorPerrusquía, Adolfo
dc.contributor.authorGuo, Weisi
dc.date.accessioned2024-02-02T11:20:56Z
dc.date.available2024-02-02T11:20:56Z
dc.date.freetoread2024-02-02
dc.date.issued2024-04-01
dc.date.pubOnline2024-01-09
dc.description.abstractProliferation of cheaper autonomous system prototypes has magnified the threat space for attacks across the manufacturing, transport, and smart living sectors. An accurate trajectory inference algorithm is required for monitoring and early detection of autonomous misbehavior and to take relevant countermeasures. This article presents a trajectory inference algorithm based on a CLOE approach using partial states measurements. The approach is based on a physics informed state parameteterization that combines the main advantages of state estimation and identification algorithms. Noise attenuation and parameter estimates convergence are obtained if the output trajectories fulfill a persistent excitation condition. Known and unknown desired reference/destination cases are considered. The stability and convergence of the proposed approach are assessed via Lyapunov stability theory under the fulfillment of a persistent excitation condition. Simulation studies are carried out to verify the effectiveness of the proposed approach.en_UK
dc.description.journalNameIEEE Transactions on Systems, Man, and Cybernetics: Systems
dc.format.extentpp. 2276-2286
dc.identifier.citationPerrusquía A, Guo W. (2024) Trajectory inference of unknown linear systems based on partial states measurements. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 54, Issue 4, April 2024, pp. 2276-2286en_UK
dc.identifier.issn2168-2216
dc.identifier.issueNo4
dc.identifier.urihttps://doi.org/10.1109/TSMC.2023.3344017
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/20735
dc.identifier.volumeNo54
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCLOEen_UK
dc.subjectexcitation signalen_UK
dc.subjectoutput measurementsen_UK
dc.subjectparameter identificationen_UK
dc.subjectstate parameterizationen_UK
dc.subjecttrajectory inferenceen_UK
dc.titleTrajectory inference of unknown linear systems based on partial states measurementsen_UK
dc.typeArticleen_UK
dcterms.dateAccepted2023-12-14

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Trajectory_inference_of_unknown_linear_systems-2024.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: