Information-theoretic joint probabilistic data association filter
dc.contributor.author | He, Shaoming | |
dc.contributor.author | Shin, Hyosang | |
dc.contributor.author | Tsourdos, Antonios | |
dc.date.accessioned | 2021-03-08T16:15:31Z | |
dc.date.available | 2021-03-08T16:15:31Z | |
dc.date.issued | 2021-03-03 | |
dc.description.abstract | This article proposes a novel information-theoretic joint probabilistic data association filter for tracking unknown number of targets. The proposed information-theoretic joint probabilistic data association algorithm is obtained by the minimization of a weighted reverse Kullback–Leibler divergence to approximate the posterior Gaussian mixture probability density function. Theoretical analysis of mean performance and error covariance performance with ideal detection probability is presented to provide insights of the proposed approach. Extensive empirical simulations are undertaken to validate the performance of the proposed multitarget tracking algorithm. | en_UK |
dc.identifier.citation | He S, Shin HS, Tsourdos A. (2020) Information-theoretic joint probabilistic data association filter. IEEE Transactions on Automatic Control, Volume 66, Issue 3, March 2021, pp. 1262-1269 | en_UK |
dc.identifier.issn | 0018-9286 | |
dc.identifier.uri | https://doi.org/10.1109/TAC.2020.2989766 | |
dc.identifier.uri | https://dspace.lib.cranfield.ac.uk/handle/1826/16454 | |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.rights | Attribution 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Information-theoretic approach | en_UK |
dc.subject | joint probabilistic data association | en_UK |
dc.subject | multiple target tracking | en_UK |
dc.title | Information-theoretic joint probabilistic data association filter | en_UK |
dc.type | Article | en_UK |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- joint_probabilistic_data_association_filter-2021.pdf
- Size:
- 998.71 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: