Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models

dc.contributor.authorMohd Nadzir, Mohd Shahrul
dc.contributor.authorAshfold, Matthew J.
dc.contributor.authorKhan, Md Firoz
dc.contributor.authorRobinson, Andrew D.
dc.contributor.authorBolas, Conor
dc.contributor.authorLatif, Mohd Talib
dc.contributor.authorWallis, Benjamin M.
dc.contributor.authorMead, Mohammed Iqbal
dc.contributor.authorAbdul Hamid, Haris Hafizal
dc.contributor.authorHarris, Neil
dc.contributor.authorAhmad Ramly, Zamzam Tuah
dc.contributor.authorLai, Goh Thian
dc.contributor.authorLiew, Ju Neng
dc.contributor.authorAhamad, Fatimah
dc.contributor.authorUning, Royston
dc.contributor.authorAbu Samah, Azizan
dc.contributor.authorMaulud, Khairul Nizam
dc.contributor.authorSuparta, Wayan
dc.contributor.authorZainudin, Siti Khalijah
dc.contributor.authorAbdul Wahab, Muhammad Ikram
dc.contributor.authorMujahid, Aazani
dc.contributor.authorMorris, Kenobi Isima
dc.contributor.authorDal Sasso, Nicholas
dc.contributor.authorSahani, Mazrura
dc.contributor.authorMüller, Moritz
dc.contributor.authorYeok, Foong Swee
dc.contributor.authorAbdul Rahman, Nasaruddin
dc.date.accessioned2018-02-07T10:02:38Z
dc.date.available2018-02-07T10:02:38Z
dc.date.issued2017-11-08
dc.description.abstractThe Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC’16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009–2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC’16 increased from a minimum of 5 ppb to ~ 10–13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC’16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.en_UK
dc.identifier.citationNadzir, M.S.M., Ashfold, M.J., Khan, M.F. et al. Spatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global models. Environmental Science and Pollution Research, January 2018, Volume 25, Issue 3, pp. 2194-2210en_UK
dc.identifier.issn0944-1344
dc.identifier.urihttps://doi.org/10.1007/s11356-017-0521-1
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/12964
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectSurface O3en_UK
dc.subjectCarbon monoxide (CO)en_UK
dc.subjectSeasonal cyclesen_UK
dc.subjectSatellite and MACC reanalysis and HYSPLIT trajectoriesen_UK
dc.titleSpatial-temporal variations in surface ozone over Ushuaia and the Antarctic region: observations from in situ measurements, satellite data, and global modelsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spatial-temporal_variations_in_surface_ozone-2017.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: