On ice-induced instability in free-surface flows.
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Course name
Type
ISSN
Format
Citation
Abstract
The problem of stability of a water-coated ice layer is investigated for a free-surface flow of a thin water film down an inclined plane. An asymptotic (double-deck) theory is developed for a flow with large Reynolds and Froude numbers which is then used to investigate linear two-dimensional, three-dimensional and nonlinear two-dimensional stability characteristics. A new mode of upstream-propagating instability arising from the interaction of the ice surface with the flow is discovered and its properties are investigated. In the linear limit, closed-form expressions for the dispersion relation and neutral curves are obtained for the case of Pr = 1. For the general case, the linear stability problem is solved numerically and the applicability of the solution with Pr = 1 is analysed. Nonlinear double-deck equations are solved with a novel global-marching-type scheme and the effects of nonlinearity are investigated. An explanation of the physical mechanism leading to the upstream propagation of instability waves is provided.