Explainability of deep SAR ATR through feature analysis
dc.contributor.author | Belloni, Carole | |
dc.contributor.author | Aouf, Nabil | |
dc.contributor.author | Balleri, Alessio | |
dc.contributor.author | Le Caillec, Jean-Marc | |
dc.contributor.author | Merlet, Thomas | |
dc.date.accessioned | 2020-11-20T10:51:23Z | |
dc.date.available | 2020-11-20T10:51:23Z | |
dc.date.issued | 2020-10-20 | |
dc.description.abstract | Understanding the decision-making process of deep learning networks is a key challenge which has rarely been investigated for Synthetic Aperture Radar (SAR) images. In this paper, a set of new analytical tools is proposed and applied to a Convolutional Neural Network (CNN) handling Automatic Target Recognition (ATR) on two SAR datasets containing military targets. | en_UK |
dc.identifier.citation | Belloni C, Aouf N, Balleri A, et al., (2020) Explainability of deep SAR ATR through feature analysis. IEEE Transactions on Aerospace and Electronic Systems, Volume 57, Issue 1, February 2021, pp. 659 - 673 | en_UK |
dc.identifier.issn | 0018-9251 | |
dc.identifier.uri | https://doi.org/10.1109/TAES.2020.3031435 | |
dc.identifier.uri | http://dspace.lib.cranfield.ac.uk/handle/1826/16021 | |
dc.language.iso | en | en_UK |
dc.publisher | IEEE | en_UK |
dc.rights | Attribution-NonCommercial 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Deep Learning | en_UK |
dc.subject | SAR | en_UK |
dc.subject | ATR | en_UK |
dc.subject | Explainability | en_UK |
dc.subject | Features | en_UK |
dc.title | Explainability of deep SAR ATR through feature analysis | en_UK |
dc.type | Article | en_UK |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Explainability_of_Deep_SAR_ATR-2021.pdf
- Size:
- 1006.42 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: