Applications of virtual machine using multi-objective optimization scheduling algorithm for improving CPU utilization and energy efficiency in cloud computing

Date published

2022-12-02

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Department

Course name

Type

Article

ISSN

1996-1073

Format

Citation

Choudhary R, Perinpanayagam S. (2022) Applications of virtual machine using multi-objective optimization scheduling algorithm for improving CPU utilization and energy efficiency in cloud computing. Energies, Volume 15, Issue 23, December 2022, Article number 9164

Abstract

Financial costs and energy savings are considered to be more critical on average for computationally intensive workflows, as such workflows which generally require extended execution times, and thus, require efficient energy consumption and entail a high financial cost. Through the effective utilization of scheduled gaps, the total execution time in a workflow can be decreased by placing uncompleted tasks in the gaps through approximate computations. In the current research, a novel approach based on multi-objective optimization is utilized with CloudSim as the underlying simulator in order to evaluate the VM (virtual machine) allocation performance. In this study, we determine the energy consumption, CPU utilization, and number of executed instructions in each scheduling interval for complex VM scheduling solutions to improve the energy efficiency and reduce the execution time. Finally, based on the simulation results and analyses, all of the tested parameters are simulated and evaluated with a proper validation in CloudSim. Based on the results, multi-objective PSO (particle swarm optimization) optimization can achieve better and more efficient effects for different parameters than multi-objective GA (genetic algorithm) optimization can.

Description

Software Description

Software Language

Github

Keywords

CloudSim, multi optimization technique, virtual machine, host machine, genetic algorithm, particle swarm optimization, cloud computing

DOI

Rights

Attribution 4.0 International

Funder/s

Relationships

Relationships

Resources